126 lines
3.7 KiB
ReStructuredText
126 lines
3.7 KiB
ReStructuredText
|
Normal Bayes Classifier
|
||
|
=======================
|
||
|
|
||
|
.. highlight:: cpp
|
||
|
|
||
|
|
||
|
This is a simple classification model assuming that feature vectors from each class are normally distributed (though, not necessarily independently distributed), so the whole data distribution function is assumed to be a Gaussian mixture, one component per class. Using the training data the algorithm estimates mean vectors and covariance matrices for every class, and then it uses them for prediction.
|
||
|
|
||
|
**[Fukunaga90] K. Fukunaga. Introduction to Statistical Pattern Recognition. second ed., New York: Academic Press, 1990.**
|
||
|
|
||
|
.. index:: CvNormalBayesClassifier
|
||
|
|
||
|
.. _CvNormalBayesClassifier:
|
||
|
|
||
|
CvNormalBayesClassifier
|
||
|
-----------------------
|
||
|
|
||
|
`id=0.110421013491 Comments from the Wiki <http://opencv.willowgarage.com/wiki/documentation/cpp/ml/CvNormalBayesClassifier>`__
|
||
|
|
||
|
.. ctype:: CvNormalBayesClassifier
|
||
|
|
||
|
|
||
|
|
||
|
Bayes classifier for normally distributed data.
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
::
|
||
|
|
||
|
|
||
|
|
||
|
class CvNormalBayesClassifier : public CvStatModel
|
||
|
{
|
||
|
public:
|
||
|
CvNormalBayesClassifier();
|
||
|
virtual ~CvNormalBayesClassifier();
|
||
|
|
||
|
CvNormalBayesClassifier( const CvMat* _train_data, const CvMat* _responses,
|
||
|
const CvMat* _var_idx=0, const CvMat* _sample_idx=0 );
|
||
|
|
||
|
virtual bool train( const CvMat* _train_data, const CvMat* _responses,
|
||
|
const CvMat* _var_idx = 0, const CvMat* _sample_idx=0, bool update=false );
|
||
|
|
||
|
virtual float predict( const CvMat* _samples, CvMat* results=0 ) const;
|
||
|
virtual void clear();
|
||
|
|
||
|
virtual void save( const char* filename, const char* name=0 );
|
||
|
virtual void load( const char* filename, const char* name=0 );
|
||
|
|
||
|
virtual void write( CvFileStorage* storage, const char* name );
|
||
|
virtual void read( CvFileStorage* storage, CvFileNode* node );
|
||
|
protected:
|
||
|
...
|
||
|
};
|
||
|
|
||
|
|
||
|
..
|
||
|
|
||
|
|
||
|
.. index:: CvNormalBayesClassifier::train
|
||
|
|
||
|
.. _CvNormalBayesClassifier::train:
|
||
|
|
||
|
CvNormalBayesClassifier::train
|
||
|
------------------------------
|
||
|
|
||
|
`id=0.746566750452 Comments from the Wiki <http://opencv.willowgarage.com/wiki/documentation/cpp/ml/CvNormalBayesClassifier%3A%3Atrain>`__
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
.. cfunction:: bool CvNormalBayesClassifier::train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx =0, const CvMat* _sample_idx=0, bool update=false )
|
||
|
|
||
|
Trains the model.
|
||
|
|
||
|
|
||
|
|
||
|
The method trains the Normal Bayes classifier. It follows the conventions of the generic
|
||
|
``train``
|
||
|
"method" with the following limitations: only CV
|
||
|
_
|
||
|
ROW
|
||
|
_
|
||
|
SAMPLE data layout is supported; the input variables are all ordered; the output variable is categorical (i.e. elements of
|
||
|
``_responses``
|
||
|
must be integer numbers, though the vector may have
|
||
|
``CV_32FC1``
|
||
|
type), and missing measurements are not supported.
|
||
|
|
||
|
In addition, there is an
|
||
|
``update``
|
||
|
flag that identifies whether the model should be trained from scratch (
|
||
|
``update=false``
|
||
|
) or should be updated using the new training data (
|
||
|
``update=true``
|
||
|
).
|
||
|
|
||
|
|
||
|
.. index:: CvNormalBayesClassifier::predict
|
||
|
|
||
|
.. _CvNormalBayesClassifier::predict:
|
||
|
|
||
|
CvNormalBayesClassifier::predict
|
||
|
--------------------------------
|
||
|
|
||
|
`id=0.821415185096 Comments from the Wiki <http://opencv.willowgarage.com/wiki/documentation/cpp/ml/CvNormalBayesClassifier%3A%3Apredict>`__
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
.. cfunction:: float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results=0 ) const
|
||
|
|
||
|
Predicts the response for sample(s)
|
||
|
|
||
|
|
||
|
|
||
|
The method
|
||
|
``predict``
|
||
|
estimates the most probable classes for the input vectors. The input vectors (one or more) are stored as rows of the matrix
|
||
|
``samples``
|
||
|
. In the case of multiple input vectors, there should be one output vector
|
||
|
``results``
|
||
|
. The predicted class for a single input vector is returned by the method.
|
||
|
|