340 lines
11 KiB
Python
Raw Normal View History

#########################################################################################
#
# IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
#
# By downloading, copying, installing or using the software you agree to this license.
# If you do not agree to this license, do not download, install,
# copy or use the software.
#
#
# Intel License Agreement
# For Open Source Computer Vision Library
#
# Copyright (C) 2000, Intel Corporation, all rights reserved.
# Third party copyrights are property of their respective owners.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# * Redistribution's of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistribution's in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * The name of Intel Corporation may not be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# This software is provided by the copyright holders and contributors "as is" and
# any express or implied warranties, including, but not limited to, the implied
# warranties of merchantability and fitness for a particular purpose are disclaimed.
# In no event shall the Intel Corporation or contributors be liable for any direct,
# indirect, incidental, special, exemplary, or consequential damages
# (including, but not limited to, procurement of substitute goods or services;
# loss of use, data, or profits; or business interruption) however caused
# and on any theory of liability, whether in contract, strict liability,
# or tort (including negligence or otherwise) arising in any way out of
# the use of this software, even if advised of the possibility of such damage.
#
#########################################################################################
# 2004-03-16, Mark Asbach <asbach@ient.rwth-aachen.de>
# Institute of Communications Engineering, RWTH Aachen University
# 2007-02-xx, direct interface to numpy by Vicent Mas <vmas@carabos.com>
# Carabos Coop. V.
# 2007-10-08, try/catch
"""Adaptors to interchange data with numpy and/or PIL
This module provides explicit conversion of OpenCV images/matrices to and from
the Python Imaging Library (PIL) and python's newest numeric library (numpy).
Currently supported image/matrix formats are:
- 3 x 8 bit RGB (GBR)
- 1 x 8 bit Grayscale
- 1 x 32 bit Float
In numpy, images are represented as multidimensional arrays with
a third dimension representing the image channels if more than one
channel is present.
"""
import cv
try:
import PIL.Image
###########################################################################
def Ipl2PIL(input):
"""Converts an OpenCV/IPL image to PIL the Python Imaging Library.
Supported input image formats are
IPL_DEPTH_8U x 1 channel
IPL_DEPTH_8U x 3 channels
IPL_DEPTH_32F x 1 channel
"""
if not isinstance(input, cv.CvMat):
raise TypeError, 'must be called with a cv.CvMat!'
#orientation
if input.origin == 0:
orientation = 1 # top left
elif input.origin == 1:
orientation = -1 # bottom left
else:
raise ValueError, 'origin must be 0 or 1!'
# mode dictionary:
# (channels, depth) : (source mode, dest mode, depth in byte)
mode_list = {
(1, cv.IPL_DEPTH_8U) : ("L", "L", 1),
(3, cv.IPL_DEPTH_8U) : ("BGR", "RGB", 3),
(1, cv.IPL_DEPTH_32F) : ("F", "F", 4)
}
key = (input.nChannels, input.depth)
if not mode_list.has_key(key):
raise ValueError, 'unknown or unsupported input mode'
modes = mode_list[key]
return PIL.Image.fromstring(
modes[1], # mode
(input.width, input.height), # size tuple
input.imageData, # data
"raw",
modes[0], # raw mode
input.widthStep, # stride
orientation # orientation
)
###########################################################################
def PIL2Ipl(input):
"""Converts a PIL image to the OpenCV/IPL CvMat data format.
Supported input image formats are:
RGB
L
F
"""
if not (isinstance(input, PIL.Image.Image)):
raise TypeError, 'Must be called with PIL.Image.Image!'
# mode dictionary:
# (pil_mode : (ipl_depth, ipl_channels)
mode_list = {
"RGB" : (cv.IPL_DEPTH_8U, 3),
"L" : (cv.IPL_DEPTH_8U, 1),
"F" : (cv.IPL_DEPTH_32F, 1)
}
if not mode_list.has_key(input.mode):
raise ValueError, 'unknown or unsupported input mode'
result = cv.cvCreateImage(
cv.cvSize(input.size[0], input.size[1]), # size
mode_list[input.mode][0], # depth
mode_list[input.mode][1] # channels
)
# set imageData
result.imageData = input.tostring()
return result
except ImportError:
pass
#############################################################################
#############################################################################
try:
import numpy
###########################################################################
def NumPy2Ipl(input):
"""Converts a numpy array to the OpenCV/IPL CvMat data format.
Supported input array layouts:
2 dimensions of numpy.uint8
3 dimensions of numpy.uint8
2 dimensions of numpy.float32
2 dimensions of numpy.float64
"""
if not isinstance(input, numpy.ndarray):
raise TypeError, 'Must be called with numpy.ndarray!'
# Check the number of dimensions of the input array
ndim = input.ndim
if not ndim in (2, 3):
raise ValueError, 'Only 2D-arrays and 3D-arrays are supported!'
# Get the number of channels
if ndim == 2:
channels = 1
else:
channels = input.shape[2]
# Get the image depth
if input.dtype == numpy.uint8:
depth = cv.IPL_DEPTH_8U
elif input.dtype == numpy.float32:
depth = cv.IPL_DEPTH_32F
elif input.dtype == numpy.float64:
depth = cv.IPL_DEPTH_64F
# supported modes list: [(channels, dtype), ...]
modes_list = [(1, numpy.uint8), (3, numpy.uint8), (1, numpy.float32), (1, numpy.float64)]
# Check if the input array layout is supported
if not (channels, input.dtype) in modes_list:
raise ValueError, 'Unknown or unsupported input mode'
result = cv.cvCreateImage(
cv.cvSize(input.shape[1], input.shape[0]), # size
depth, # depth
channels # channels
)
# set imageData
result.imageData = input.tostring()
return result
###########################################################################
def Ipl2NumPy(input):
"""Converts an OpenCV/IPL image to a numpy array.
Supported input image formats are
IPL_DEPTH_8U x 1 channel
IPL_DEPTH_8U x 3 channels
IPL_DEPTH_32F x 1 channel
IPL_DEPTH_32F x 2 channels
IPL_DEPTH_32S x 1 channel
IPL_DEPTH_64F x 1 channel
IPL_DEPTH_64F x 2 channels
"""
if not isinstance(input, cv.CvMat):
raise TypeError, 'must be called with a cv.CvMat!'
# data type dictionary:
# (channels, depth) : numpy dtype
ipl2dtype = {
(1, cv.IPL_DEPTH_8U) : numpy.uint8,
(3, cv.IPL_DEPTH_8U) : numpy.uint8,
(1, cv.IPL_DEPTH_32F) : numpy.float32,
(2, cv.IPL_DEPTH_32F) : numpy.float32,
(1, cv.IPL_DEPTH_32S) : numpy.int32,
(1, cv.IPL_DEPTH_64F) : numpy.float64,
(2, cv.IPL_DEPTH_64F) : numpy.float64
}
key = (input.nChannels, input.depth)
if not ipl2dtype.has_key(key):
raise ValueError, 'unknown or unsupported input mode'
# Get the numpy array and reshape it correctly
# ATTENTION: flipped dimensions width/height on 2007-11-15
if input.nChannels == 1:
array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key])
return numpy.reshape(array_1d, (input.height, input.width))
elif input.nChannels == 2:
array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key])
return numpy.reshape(array_1d, (input.height, input.width, 2))
elif input.nChannels == 3:
# Change the order of channels from BGR to RGB
rgb = cv.cvCreateImage(cv.cvSize(input.width, input.height), input.depth, 3)
cv.cvCvtColor(input, rgb, cv.CV_BGR2RGB)
array_1d = numpy.fromstring(rgb.imageData, dtype=ipl2dtype[key])
return numpy.reshape(array_1d, (input.height, input.width, 3))
except ImportError:
pass
###########################################################################
###########################################################################
try:
import PIL.Image
import numpy
###########################################################################
def PIL2NumPy(input):
"""THIS METHOD IS DEPRECATED
Converts a PIL image to a numpy array.
Supported input image formats are:
RGB
L
F
"""
if not (isinstance(input, PIL.Image.Image)):
raise TypeError, 'Must be called with PIL.Image.Image!'
# modes dictionary:
# pil_mode : numpy dtype
modes_map = {
"RGB" : numpy.uint8,
"L" : numpy.uint8,
"F" : numpy.float32
}
if not modes_map.has_key(input.mode):
raise ValueError, 'Unknown or unsupported input mode!. Supported modes are RGB, L and F.'
result_ro = numpy.asarray(input, dtype=modes_map[input.mode]) # Read-only array
return result_ro.copy() # Return a writeable array
###########################################################################
def NumPy2PIL(input):
"""THIS METHOD IS DEPRECATED
Converts a numpy array to a PIL image.
Supported input array layouts:
2 dimensions of numpy.uint8
3 dimensions of numpy.uint8
2 dimensions of numpy.float32
"""
if not isinstance(input, numpy.ndarray):
raise TypeError, 'Must be called with numpy.ndarray!'
# Check the number of dimensions of the input array
ndim = input.ndim
if not ndim in (2, 3):
raise ValueError, 'Only 2D-arrays and 3D-arrays are supported!'
if ndim == 2:
channels = 1
else:
channels = input.shape[2]
# supported modes list: [(channels, dtype), ...]
modes_list = [(1, numpy.uint8), (3, numpy.uint8), (1, numpy.float32)]
mode = (channels, input.dtype)
if not mode in modes_list:
raise ValueError, 'Unknown or unsupported input mode'
return PIL.Image.fromarray(input)
except ImportError:
pass