556 lines
19 KiB
C++
Raw Normal View History

#ifndef OPENCV_MXARRAY_HPP_
#define OPENCV_MXARRAY_HPP_
#include "mex.h"
#include <vector>
#include <string>
#include <opencv2/core.hpp>
/*
* All recent versions of Matlab ship with the MKL library which contains
* a blas extension called mkl_?omatcopy(). This defines an out-of-place
* copy and transpose operation.
*
* The mkl library is in ${MATLAB_ROOT}/bin/${MATLAB_MEXEXT}/libmkl...
* Matlab does not ship headers for the mkl functions, so we define them
* here.
*
* This operation is used extensively to copy between Matlab's column-major
* format and OpenCV's row-major format.
*/
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
}
#endif
/*!
* @brief raise error if condition fails
*
* This is a conditional wrapper for mexErrMsgTxt. If the conditional
* expression fails, an error is raised and the mex function returns
* to Matlab, otherwise this function does nothing
*/
void conditionalError(bool expr, const std::string& str) {
if (!expr) mexErrMsgTxt(std::string("condition failed: ").append(str).c_str());
}
/*!
* @brief raise an error
*
* This function is a wrapper around mexErrMsgTxt
*/
void error(const std::string& str) {
mexErrMsgTxt(str.c_str());
}
// ----------------------------------------------------------------------------
// PREDECLARATIONS
// ----------------------------------------------------------------------------
class MxArray;
template <typename InputScalar, typename OutputScalar>
void deepCopyAndTranspose(const cv::Mat& src, MxArray& dst);
template <typename InputScalar, typename OutputScalar>
void deepCopyAndTranspose(const MxArray& src, cv::Mat& dst);
// ----------------------------------------------------------------------------
// MATLAB TRAITS
// ----------------------------------------------------------------------------
namespace Matlab {
class DefaultTraits {};
class InheritType {};
static const int Dynamic = -1;
template<typename _Tp = DefaultTraits> class Traits {
public:
static const mxClassID ScalarType = mxUNKNOWN_CLASS;
static const mxComplexity Complex = mxCOMPLEX;
static const mxComplexity Real = mxCOMPLEX;
static std::string ToString() { return "Unknown/Unsupported"; }
};
// bool
template<> class Traits<bool> {
public:
static const mxClassID ScalarType = mxLOGICAL_CLASS;
static std::string ToString() { return "boolean"; }
};
// uint8_t
template<> class Traits<uint8_t> {
public:
static const mxClassID ScalarType = mxUINT8_CLASS;
static std::string ToString() { return "uint8_t"; }
};
// int8_t
template<> class Traits<int8_t> {
public:
static const mxClassID ScalarType = mxINT8_CLASS;
static std::string ToString() { return "int8_t"; }
};
// uint16_t
template<> class Traits<uint16_t> {
public:
static const mxClassID ScalarType = mxUINT16_CLASS;
static std::string ToString() { return "uint16_t"; }
};
// int16_t
template<> class Traits<int16_t> {
public:
static const mxClassID ScalarType = mxINT16_CLASS;
static std::string ToString() { return "int16_t"; }
};
// uint32_t
template<> class Traits<uint32_t> {
public:
static const mxClassID ScalarType = mxUINT32_CLASS;
static std::string ToString() { return "uint32_t"; }
};
// int32_t
template<> class Traits<int32_t> {
public:
static const mxClassID ScalarType = mxINT32_CLASS;
static std::string ToString() { return "int32_t"; }
};
// uint64_t
template<> class Traits<uint64_t> {
public:
static const mxClassID ScalarType = mxUINT64_CLASS;
static std::string ToString() { return "uint64_t"; }
};
// int64_t
template<> class Traits<int64_t> {
public:
static const mxClassID ScalarType = mxINT64_CLASS;
static std::string ToString() { return "int64_t"; }
};
// float
template<> class Traits<float> {
public:
static const mxClassID ScalarType = mxSINGLE_CLASS;
static std::string ToString() { return "float"; }
};
// double
template<> class Traits<double> {
public:
static const mxClassID ScalarType = mxDOUBLE_CLASS;
static std::string ToString() { return "double"; }
};
// size_t
template<> class Traits<size_t> {
public:
static const mxClassID ScalarType = (sizeof(size_t) == 4) ? mxUINT32_CLASS : mxUINT64_CLASS;
static std::string ToString() { return "size_t"; }
};
// char
template<> class Traits<char> {
public:
static const mxClassID ScalarType = mxCHAR_CLASS;
static std::string ToString() { return "char"; }
};
// char
template<> class Traits<Matlab::InheritType> {
public:
static std::string ToString() { return "Inherited type"; }
};
}
// ----------------------------------------------------------------------------
// MXARRAY
// ----------------------------------------------------------------------------
/*!
* @class MxArray
* @brief A thin wrapper around Matlab's mxArray types
*
* MxArray provides a thin object oriented wrapper around Matlab's
* native mxArray type which exposes most of the functionality of the
* Matlab interface, but in a more C++ manner. MxArray objects are scoped,
* so you can freely create and destroy them without worrying about memory
* management. If you wish to pass the underlying mxArray* representation
* back to Matlab as an lvalue, see the releaseOwnership() method
*
* MxArrays can be directly converted into OpenCV mat objects and std::string
* objects, since there is a natural mapping between these types. More
* complex types are mapped through the Bridge which does custom conversions
* such as MxArray --> cv::Keypoints, etc
*/
class MxArray {
private:
mxArray* ptr_;
bool owns_;
/*!
* @brief swap all members of this and other
*
* the swap method is used by the assignment and move constructors
* to swap the members of two MxArrays, leaving both in destructible states
*/
friend void swap(MxArray& first, MxArray& second) {
using std::swap;
swap(first.ptr_, second.ptr_);
swap(first.owns_, second.owns_);
}
void dealloc() {
if (owns_ && ptr_) { mxDestroyArray(ptr_); ptr_ = NULL; owns_ = false; }
}
public:
// --------------------------------------------------------------------------
// CONSTRUCTORS
// --------------------------------------------------------------------------
/*!
* @brief default constructor
*
* Construct a valid 0x0 matrix (so all other methods do not need validity checks
*/
MxArray() : ptr_(mxCreateDoubleMatrix(1, 1, Matlab::Traits<>::Real)), owns_(true) {}
/*!
* @brief inheriting constructor
*
* Inherit an mxArray from Matlab. Don't claim ownership of the array,
* just encapsulate it
*/
MxArray(const mxArray* ptr) : ptr_(const_cast<mxArray *>(ptr)), owns_(false) {}
MxArray& operator=(const mxArray* ptr) {
dealloc();
ptr_ = const_cast<mxArray *>(ptr);
owns_ = false;
return *this;
}
/*!
* @brief explicit typed constructor
*
* This constructor explicitly creates an MxArray of the given size and type.
*/
MxArray(size_t m, size_t n, size_t k, mxClassID id, mxComplexity com = Matlab::Traits<>::Real) : owns_(true) {
mwSize dims[] = { static_cast<mwSize>(m), static_cast<mwSize>(n), static_cast<mwSize>(k) };
ptr_ = mxCreateNumericArray(3, dims, id, com);
}
/*!
* @brief explicit tensor constructor
*
* Explicitly construct a tensor of given size and type. Since constructors cannot
* be explicitly templated, this is a static factory method
*/
template <typename Scalar>
static MxArray Tensor(size_t m, size_t n, size_t k=1) {
return MxArray(m, n, k, Matlab::Traits<Scalar>::ScalarType);
}
/*!
* @brief explicit matrix constructor
*
* Explicitly construct a matrix of given size and type. Since constructors cannot
* be explicitly templated, this is a static factory method
*/
template <typename Scalar>
static MxArray Matrix(size_t m, size_t n) {
return MxArray(m, n, 1, Matlab::Traits<Scalar>::ScalarType);
}
/*!
* @brief explicit vector constructor
*
* Explicitly construct a vector of given size and type. Since constructors cannot
* be explicitly templated, this is a static factory method
*/
template <typename Scalar>
static MxArray Vector(size_t m) {
return MxArray(m, 1, 1, Matlab::Traits<Scalar>::ScalarType);
}
/*!
* @brief explicit scalar constructor
*
* Explicitly construct a scalar of given type. Since constructors cannot
* be explicitly templated, this is a static factory method
*/
template <typename Scalar>
static MxArray Scalar(Scalar value = 0) {
MxArray s(1, 1, 1, Matlab::Traits<Scalar>::ScalarType);
s.real<Scalar>()[0] = value;
return s;
}
/*!
* @brief destructor
*
* The destructor deallocates any data allocated by mxCreate* methods only
* if the object is owned
*/
virtual ~MxArray() {
dealloc();
}
/*!
* @brief copy constructor
*
* All copies are deep copies. If you have a C++11 compatible compiler, prefer
* move construction to copy construction
*/
MxArray(const MxArray& other) : ptr_(mxDuplicateArray(other.ptr_)), owns_(true) {}
/*!
* @brief copy-and-swap assignment
*
* This assignment operator uses the copy and swap idiom to provide a strong
* exception guarantee when swapping two objects.
*
* Note in particular that the other MxArray is passed by value, thus invoking
* the copy constructor which performs a deep copy of the input. The members of
* this and other are then swapped
*/
MxArray& operator=(MxArray other) {
swap(*this, other);
return *this;
}
#if __cplusplus >= 201103L
/*
* @brief C++11 move constructor
*
* When C++11 support is available, move construction is used to move returns
* out of functions, etc. This is much fast than copy construction, since the
* move constructed object replaced itself with a default constructed MxArray,
* which is of size 0 x 0.
*/
MxArray(MxArray&& other) : MxArray() {
swap(*this, other);
}
#endif
/*
* @brief release ownership to allow return into Matlab workspace
*
* MxArray is not directly convertible back to mxArray types through assignment
* because the MxArray may have been allocated on the free store, making it impossible
* to know whether the returned pointer will be released by someone else or not.
*
* Since Matlab requires mxArrays be passed back into the workspace, the only way
* to achieve that is through this function, which explicitly releases ownership
* of the object, assuming the Matlab interpreter receving the object will delete
* it at a later time
*
* e.g.
* {
* MxArray A<double>(5, 5); // allocates memory
* MxArray B<double>(5, 5); // ditto
* plhs[0] = A; // not allowed!!
* plhs[0] = A.releaseOwnership(); // makes explicit that ownership is being released
* } // end of scope. B is released, A isn't
*
*/
mxArray* releaseOwnership() {
owns_ = false;
return ptr_;
}
template <typename Scalar>
static MxArray FromMat(const cv::Mat& mat) {
MxArray arr(mat.rows, mat.cols, mat.channels(), Matlab::Traits<Scalar>::ScalarType);
switch (mat.depth()) {
case CV_8U: deepCopyAndTranspose<uint8_t, Scalar>(mat, arr); break;
case CV_8S: deepCopyAndTranspose<int8_t, Scalar>(mat, arr); break;
case CV_16U: deepCopyAndTranspose<uint16_t, Scalar>(mat, arr); break;
case CV_16S: deepCopyAndTranspose<int16_t, Scalar>(mat, arr); break;
case CV_32S: deepCopyAndTranspose<int32_t, Scalar>(mat, arr); break;
case CV_32F: deepCopyAndTranspose<float, Scalar>(mat, arr); break;
case CV_64F: deepCopyAndTranspose<double, Scalar>(mat, arr); break;
default: error("Attempted to convert from unknown class");
}
return arr;
}
template <typename Scalar>
cv::Mat toMat() const {
cv::Mat mat(rows(), cols(), CV_MAKETYPE(cv::DataType<Scalar>::type, channels()));
switch (ID()) {
case mxINT8_CLASS: deepCopyAndTranspose<int8_t, Scalar>(*this, mat); break;
case mxUINT8_CLASS: deepCopyAndTranspose<uint8_t, Scalar>(*this, mat); break;
case mxINT16_CLASS: deepCopyAndTranspose<int16_t, Scalar>(*this, mat); break;
case mxUINT16_CLASS: deepCopyAndTranspose<uint16_t, Scalar>(*this, mat); break;
case mxINT32_CLASS: deepCopyAndTranspose<int32_t, Scalar>(*this, mat); break;
case mxUINT32_CLASS: deepCopyAndTranspose<uint32_t, Scalar>(*this, mat); break;
case mxINT64_CLASS: deepCopyAndTranspose<int64_t, Scalar>(*this, mat); break;
case mxUINT64_CLASS: deepCopyAndTranspose<uint64_t, Scalar>(*this, mat); break;
case mxSINGLE_CLASS: deepCopyAndTranspose<float, Scalar>(*this, mat); break;
case mxDOUBLE_CLASS: deepCopyAndTranspose<double, Scalar>(*this, mat); break;
case mxCHAR_CLASS: deepCopyAndTranspose<char, Scalar>(*this, mat); break;
case mxLOGICAL_CLASS: deepCopyAndTranspose<int8_t, Scalar>(*this, mat); break;
default: error("Attempted to convert from unknown class");
}
return mat;
}
MxArray field(const std::string& name) { return MxArray(mxGetField(ptr_, 0, name.c_str())); }
template <typename Scalar>
Scalar* real() { return static_cast<Scalar *>(mxGetData(ptr_)); }
template <typename Scalar>
Scalar* imag() { return static_cast<Scalar *>(mxGetImagData(ptr_)); }
template <typename Scalar>
const Scalar* real() const { return static_cast<const Scalar *>(mxGetData(ptr_)); }
template <typename Scalar>
const Scalar* imag() const { return static_cast<const Scalar *>(mxGetData(ptr_)); }
template <typename Scalar>
Scalar scalar() const { return static_cast<Scalar *>(mxGetData(ptr_))[0]; }
std::string toString() const {
conditionalError(isString(), "Attempted to convert non-string type to string");
std::string str;
str.reserve(size()+1);
mxGetString(ptr_, const_cast<char *>(str.data()), str.size());
mexPrintf(str.c_str());
return str;
}
size_t size() const { return mxGetNumberOfElements(ptr_); }
size_t rows() const { return mxGetM(ptr_); }
size_t cols() const { return mxGetN(ptr_); }
size_t channels() const { return (mxGetNumberOfDimensions(ptr_) > 2) ? mxGetDimensions(ptr_)[2] : 1; }
bool isComplex() const { return mxIsComplex(ptr_); }
bool isNumeric() const { return mxIsNumeric(ptr_); }
bool isLogical() const { return mxIsLogical(ptr_); }
bool isString() const { return mxIsChar(ptr_); }
bool isCell() const { return mxIsCell(ptr_); }
bool isStructure() const { return mxIsStruct(ptr_); }
bool isClass(const std::string& name) const { return mxIsClass(ptr_, name.c_str()); }
std::string className() const { return std::string(mxGetClassName(ptr_)); }
mxClassID ID() const { return mxGetClassID(ptr_); }
};
/*!
* @brief template specialization for inheriting types
*
* This template specialization attempts to preserve the best mapping
* between OpenCV and Matlab types. Matlab uses double types almost universally, so
* all floating float types are converted to doubles.
* Unfortunately OpenCV does not have a native logical type, so
* that gets mapped to an unsigned 8-bit value
*/
template <>
MxArray MxArray::FromMat<Matlab::InheritType>(const cv::Mat& mat) {
switch (mat.depth()) {
case CV_8U: return FromMat<uint8_t>(mat);
case CV_8S: return FromMat<int8_t>(mat);
case CV_16U: return FromMat<uint16_t>(mat);
case CV_16S: return FromMat<int16_t>(mat);
case CV_32S: return FromMat<int32_t>(mat);
case CV_32F: return FromMat<double>(mat); //NOTE: Matlab uses double as native type!
case CV_64F: return FromMat<double>(mat);
default: error("Attempted to convert from unknown class");
}
return MxArray();
}
/*!
* @brief template specialization for inheriting types
*
* This template specialization attempts to preserve the best mapping
* between Matlab and OpenCV types. OpenCV has poor support for double precision
* types, so all floating point types are cast to float. Logicals get cast
* to unsignd 8-bit value.
*/
template <>
cv::Mat MxArray::toMat<Matlab::InheritType>() const {
switch (ID()) {
case mxINT8_CLASS: return toMat<int8_t>();
case mxUINT8_CLASS: return toMat<uint8_t>();;
case mxINT16_CLASS: return toMat<int16_t>();
case mxUINT16_CLASS: return toMat<uint16_t>();
case mxINT32_CLASS: return toMat<int32_t>();
case mxUINT32_CLASS: return toMat<int32_t>();
case mxINT64_CLASS: return toMat<int64_t>();
case mxUINT64_CLASS: return toMat<int64_t>();
case mxSINGLE_CLASS: return toMat<float>();
case mxDOUBLE_CLASS: return toMat<float>(); //NOTE: OpenCV uses float as native type!
case mxCHAR_CLASS: return toMat<int8_t>();
case mxLOGICAL_CLASS: return toMat<int8_t>();
default: error("Attempted to convert from unknown class");
}
return cv::Mat();
}
// ----------------------------------------------------------------------------
// MATRIX TRANSPOSE
// ----------------------------------------------------------------------------
template <typename InputScalar, typename OutputScalar>
void gemt(const char major, const size_t M, const size_t N, const InputScalar* a, size_t lda, OutputScalar* b, size_t ldb) {
switch (major) {
case 'R':
for (size_t m = 0; m < M; ++m) {
InputScalar const * arow = a + m*lda;
InputScalar const * const aend = arow + N;
OutputScalar * bcol = b + m;
while (arow < aend) {
*bcol = *arow;
arow++;
bcol+=ldb;
}
}
return;
case 'C':
for (size_t n = 0; n < N; ++n) {
InputScalar const * acol = a + n*lda;
InputScalar const * const aend = acol + M;
OutputScalar * brow = b + n;
while (acol < aend) {
*brow = *acol;
acol++;
brow+=ldb;
}
}
return;
default:
error(std::string("Unknown ordering given: ").append(std::string(1,major)));
}
}
template <typename InputScalar, typename OutputScalar>
void deepCopyAndTranspose(const cv::Mat& in, MxArray& out) {
conditionalError(static_cast<size_t>(in.rows) == out.rows(), "Matrices must have the same number of rows");
conditionalError(static_cast<size_t>(in.cols) == out.cols(), "Matrices must have the same number of cols");
conditionalError(static_cast<size_t>(in.channels()) == out.channels(), "Matrices must have the same number of channels");
const InputScalar* inp = in.ptr<InputScalar>(0);
OutputScalar* outp = out.real<OutputScalar>();
gemt('R', out.rows(), out.cols(), inp, in.step1(), outp, out.rows());
}
template <typename InputScalar, typename OutputScalar>
void deepCopyAndTranspose(const MxArray& in, cv::Mat& out) {
conditionalError(in.rows() == static_cast<size_t>(out.rows), "Matrices must have the same number of rows");
conditionalError(in.cols() == static_cast<size_t>(out.cols), "Matrices must have the same number of cols");
conditionalError(in.channels() == static_cast<size_t>(out.channels()), "Matrices must have the same number of channels");
const InputScalar* inp = in.real<InputScalar>();
OutputScalar* outp = out.ptr<OutputScalar>(0);
gemt('C', in.rows(), in.cols(), inp, in.rows(), outp, out.step1());
}
#endif