opencv/samples/python2/camshift.py

119 lines
4.0 KiB
Python
Raw Normal View History

2011-08-27 13:43:32 +00:00
'''
Camshift tracker
================
This is a demo that shows mean-shift based tracking
You select a color objects such as your face and it tracks it.
This reads from video camera (0 by default, or the camera number the user enters)
2011-08-13 08:54:11 +00:00
2011-08-27 13:43:32 +00:00
http://www.robinhewitt.com/research/track/camshift.html
2011-08-15 01:36:41 +00:00
2011-08-27 13:43:32 +00:00
Usage:
------
camshift.py [<video source>]
2011-08-15 01:36:41 +00:00
2011-08-27 13:43:32 +00:00
To initialize tracking, select the object with mouse
2011-08-15 01:36:41 +00:00
Keys:
2011-08-27 13:43:32 +00:00
-----
ESC - exit
b - toggle back-projected probability visualization
2011-08-15 01:36:41 +00:00
'''
2011-08-13 08:54:11 +00:00
2011-08-27 13:43:32 +00:00
import numpy as np
import cv2
import video
2011-08-13 08:54:11 +00:00
class App(object):
def __init__(self, video_src):
self.cam = video.create_capture(video_src)
ret, self.frame = self.cam.read()
cv2.namedWindow('camshift')
cv2.setMouseCallback('camshift', self.onmouse)
self.selection = None
self.drag_start = None
self.tracking_state = 0
2011-08-15 01:36:41 +00:00
self.show_backproj = False
2011-08-13 08:54:11 +00:00
def onmouse(self, event, x, y, flags, param):
x, y = np.int16([x, y]) # BUG
if event == cv2.EVENT_LBUTTONDOWN:
self.drag_start = (x, y)
self.tracking_state = 0
if self.drag_start:
if flags & cv2.EVENT_FLAG_LBUTTON:
h, w = self.frame.shape[:2]
xo, yo = self.drag_start
x0, y0 = np.maximum(0, np.minimum([xo, yo], [x, y]))
x1, y1 = np.minimum([w, h], np.maximum([xo, yo], [x, y]))
self.selection = None
if x1-x0 > 0 and y1-y0 > 0:
self.selection = (x0, y0, x1, y1)
else:
self.drag_start = None
if self.selection is not None:
self.tracking_state = 1
def show_hist(self):
bin_count = self.hist.shape[0]
bin_w = 24
img = np.zeros((256, bin_count*bin_w, 3), np.uint8)
for i in xrange(bin_count):
h = int(self.hist[i])
cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1)
img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
cv2.imshow('hist', img)
def run(self):
while True:
ret, self.frame = self.cam.read()
2011-08-15 01:36:41 +00:00
vis = self.frame.copy()
2011-08-13 08:54:11 +00:00
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
2011-08-13 08:54:11 +00:00
if self.selection:
x0, y0, x1, y1 = self.selection
2011-08-15 01:36:41 +00:00
self.track_window = (x0, y0, x1-x0, y1-y0)
2011-08-13 08:54:11 +00:00
hsv_roi = hsv[y0:y1, x0:x1]
2011-08-15 01:36:41 +00:00
mask_roi = mask[y0:y1, x0:x1]
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
2011-08-13 08:54:11 +00:00
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX);
self.hist = hist.reshape(-1)
self.show_hist()
2011-08-15 01:36:41 +00:00
vis_roi = vis[y0:y1, x0:x1]
cv2.bitwise_not(vis_roi, vis_roi)
vis[mask == 0] = 0
2011-08-13 08:54:11 +00:00
if self.tracking_state == 1:
self.selection = None
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
2011-08-15 01:36:41 +00:00
prob &= mask
2011-08-13 08:54:11 +00:00
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
2011-08-15 01:36:41 +00:00
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
2011-08-13 08:54:11 +00:00
2011-08-15 01:36:41 +00:00
if self.show_backproj:
vis[:] = prob[...,np.newaxis]
try: cv2.ellipse(vis, track_box, (0, 0, 255), 2)
except: print track_box
2011-08-13 08:54:11 +00:00
2011-08-15 01:36:41 +00:00
cv2.imshow('camshift', vis)
ch = 0xFF & cv2.waitKey(5)
2011-08-15 01:36:41 +00:00
if ch == 27:
2011-08-13 08:54:11 +00:00
break
2011-08-15 01:36:41 +00:00
if ch == ord('b'):
self.show_backproj = not self.show_backproj
2012-03-15 03:45:15 +00:00
cv2.destroyAllWindows()
2011-08-13 08:54:11 +00:00
if __name__ == '__main__':
import sys
try: video_src = sys.argv[1]
except: video_src = 0
2011-08-27 13:43:32 +00:00
print __doc__
2011-08-13 08:54:11 +00:00
App(video_src).run()