162 lines
5.4 KiB
Python
162 lines
5.4 KiB
Python
|
import numpy as np
|
||
|
import cv2
|
||
|
from multiprocessing.pool import ThreadPool
|
||
|
|
||
|
SZ = 20 # size of each digit is SZ x SZ
|
||
|
CLASS_N = 10
|
||
|
|
||
|
def load_base(fn):
|
||
|
print 'loading "%s" ...' % fn
|
||
|
digits_img = cv2.imread(fn, 0)
|
||
|
h, w = digits_img.shape
|
||
|
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
||
|
digits = np.array(digits).reshape(-1, SZ, SZ)
|
||
|
digits = np.float32(digits).reshape(-1, SZ*SZ) / 255.0
|
||
|
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
||
|
return digits, labels
|
||
|
|
||
|
def cross_validate(model_class, params, samples, labels, kfold = 4, pool = None):
|
||
|
n = len(samples)
|
||
|
folds = np.array_split(np.arange(n), kfold)
|
||
|
def f(i):
|
||
|
model = model_class(**params)
|
||
|
test_idx = folds[i]
|
||
|
train_idx = list(folds)
|
||
|
train_idx.pop(i)
|
||
|
train_idx = np.hstack(train_idx)
|
||
|
train_samples, train_labels = samples[train_idx], labels[train_idx]
|
||
|
test_samples, test_labels = samples[test_idx], labels[test_idx]
|
||
|
model.train(train_samples, train_labels)
|
||
|
resp = model.predict(test_samples)
|
||
|
score = (resp != test_labels).mean()
|
||
|
print ".",
|
||
|
return score
|
||
|
if pool is None:
|
||
|
scores = map(f, xrange(kfold))
|
||
|
else:
|
||
|
scores = pool.map(f, xrange(kfold))
|
||
|
return np.mean(scores)
|
||
|
|
||
|
class StatModel(object):
|
||
|
def load(self, fn):
|
||
|
self.model.load(fn)
|
||
|
def save(self, fn):
|
||
|
self.model.save(fn)
|
||
|
|
||
|
class KNearest(StatModel):
|
||
|
def __init__(self, k = 3):
|
||
|
self.k = k
|
||
|
|
||
|
@staticmethod
|
||
|
def adjust(samples, labels):
|
||
|
print 'adjusting KNearest ...'
|
||
|
best_err, best_k = np.inf, -1
|
||
|
for k in xrange(1, 11):
|
||
|
err = cross_validate(KNearest, dict(k=k), samples, labels)
|
||
|
if err < best_err:
|
||
|
best_err, best_k = err, k
|
||
|
print 'k = %d, error: %.2f %%' % (k, err*100)
|
||
|
best_params = dict(k=best_k)
|
||
|
print 'best params:', best_params
|
||
|
return best_params
|
||
|
|
||
|
def train(self, samples, responses):
|
||
|
self.model = cv2.KNearest()
|
||
|
self.model.train(samples, responses)
|
||
|
|
||
|
def predict(self, samples):
|
||
|
retval, results, neigh_resp, dists = self.model.find_nearest(samples, self.k)
|
||
|
return results.ravel()
|
||
|
|
||
|
class SVM(StatModel):
|
||
|
def __init__(self, C = 1, gamma = 0.5):
|
||
|
self.params = dict( kernel_type = cv2.SVM_RBF,
|
||
|
svm_type = cv2.SVM_C_SVC,
|
||
|
C = C,
|
||
|
gamma = gamma )
|
||
|
|
||
|
@staticmethod
|
||
|
def adjust(samples, labels):
|
||
|
Cs = np.logspace(0, 5, 10, base=2)
|
||
|
gammas = np.logspace(-7, -2, 10, base=2)
|
||
|
scores = np.zeros((len(Cs), len(gammas)))
|
||
|
scores[:] = np.nan
|
||
|
|
||
|
print 'adjusting SVM (may take a long time) ...'
|
||
|
def f(job):
|
||
|
i, j = job
|
||
|
params = dict(C = Cs[i], gamma=gammas[j])
|
||
|
score = cross_validate(SVM, params, samples, labels)
|
||
|
scores[i, j] = score
|
||
|
nready = np.isfinite(scores).sum()
|
||
|
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (nready, scores.size, np.nanmin(scores)*100, score*100)
|
||
|
|
||
|
pool = ThreadPool(processes=cv2.getNumberOfCPUs())
|
||
|
pool.map(f, np.ndindex(*scores.shape))
|
||
|
print scores
|
||
|
|
||
|
i, j = np.unravel_index(scores.argmin(), scores.shape)
|
||
|
best_params = dict(C = Cs[i], gamma=gammas[j])
|
||
|
print 'best params:', best_params
|
||
|
print 'best error: %.2f %%' % (scores.min()*100)
|
||
|
return best_params
|
||
|
|
||
|
def train(self, samples, responses):
|
||
|
self.model = cv2.SVM()
|
||
|
self.model.train(samples, responses, params = self.params)
|
||
|
|
||
|
def predict(self, samples):
|
||
|
return self.model.predict_all(samples).ravel()
|
||
|
|
||
|
def main_adjustSVM(samples, labels):
|
||
|
params = SVM.adjust(samples, labels)
|
||
|
print 'training SVM on all samples ...'
|
||
|
model = SVN(**params)
|
||
|
model.train(samples, labels)
|
||
|
print 'saving "digits_svm.dat" ...'
|
||
|
model.save('digits_svm.dat')
|
||
|
|
||
|
def main_adjustKNearest(samples, labels):
|
||
|
params = KNearest.adjust(samples, labels)
|
||
|
|
||
|
def main_showSVM(samples, labels):
|
||
|
from common import mosaic
|
||
|
|
||
|
train_n = int(0.9*len(samples))
|
||
|
digits_train, digits_test = np.split(samples[shuffle], [train_n])
|
||
|
labels_train, labels_test = np.split(labels[shuffle], [train_n])
|
||
|
|
||
|
print 'training SVM ...'
|
||
|
model = SVM(C=2.16, gamma=0.0536)
|
||
|
model.train(digits_train, labels_train)
|
||
|
|
||
|
train_err = (model.predict(digits_train) != labels_train).mean()
|
||
|
resp_test = model.predict(digits_test)
|
||
|
test_err = (resp_test != labels_test).mean()
|
||
|
print 'train errors: %.2f %%' % (train_err*100)
|
||
|
print 'test errors: %.2f %%' % (test_err*100)
|
||
|
|
||
|
|
||
|
# visualize test results
|
||
|
vis = []
|
||
|
for img, flag in zip(digits_test, resp_test == labels_test):
|
||
|
img = np.uint8(img*255).reshape(SZ, SZ)
|
||
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||
|
if not flag:
|
||
|
img[...,:2] = 0
|
||
|
vis.append(img)
|
||
|
vis = mosaic(25, vis)
|
||
|
cv2.imshow('test', vis)
|
||
|
cv2.waitKey()
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
samples, labels = load_base('digits.png')
|
||
|
shuffle = np.random.permutation(len(samples))
|
||
|
samples, labels = samples[shuffle], labels[shuffle]
|
||
|
|
||
|
#main_adjustSVM(samples, labels)
|
||
|
#main_adjustKNearest(samples, labels)
|
||
|
main_showSVM(samples, labels)
|