2010-07-16 12:54:53 +00:00
|
|
|
/* sgesv.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
2010-05-11 17:44:00 +00:00
|
|
|
#include "clapack.h"
|
|
|
|
|
2010-07-16 12:54:53 +00:00
|
|
|
|
2010-05-11 17:44:00 +00:00
|
|
|
/* Subroutine */ int sgesv_(integer *n, integer *nrhs, real *a, integer *lda,
|
|
|
|
integer *ipiv, real *b, integer *ldb, integer *info)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
extern /* Subroutine */ int xerbla_(char *, integer *), sgetrf_(
|
|
|
|
integer *, integer *, real *, integer *, integer *, integer *),
|
|
|
|
sgetrs_(char *, integer *, integer *, real *, integer *, integer *
|
|
|
|
, real *, integer *, integer *);
|
|
|
|
|
|
|
|
|
2010-07-16 12:54:53 +00:00
|
|
|
/* -- LAPACK driver routine (version 3.2) -- */
|
2010-05-11 17:44:00 +00:00
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* November 2006 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* SGESV computes the solution to a real system of linear equations */
|
|
|
|
/* A * X = B, */
|
|
|
|
/* where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
|
|
|
|
|
|
|
|
/* The LU decomposition with partial pivoting and row interchanges is */
|
|
|
|
/* used to factor A as */
|
|
|
|
/* A = P * L * U, */
|
|
|
|
/* where P is a permutation matrix, L is unit lower triangular, and U is */
|
|
|
|
/* upper triangular. The factored form of A is then used to solve the */
|
|
|
|
/* system of equations A * X = B. */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
/* N (input) INTEGER */
|
|
|
|
/* The number of linear equations, i.e., the order of the */
|
|
|
|
/* matrix A. N >= 0. */
|
|
|
|
|
|
|
|
/* NRHS (input) INTEGER */
|
|
|
|
/* The number of right hand sides, i.e., the number of columns */
|
|
|
|
/* of the matrix B. NRHS >= 0. */
|
|
|
|
|
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
|
|
|
/* On entry, the N-by-N coefficient matrix A. */
|
|
|
|
/* On exit, the factors L and U from the factorization */
|
|
|
|
/* A = P*L*U; the unit diagonal elements of L are not stored. */
|
|
|
|
|
|
|
|
/* LDA (input) INTEGER */
|
|
|
|
/* The leading dimension of the array A. LDA >= max(1,N). */
|
|
|
|
|
|
|
|
/* IPIV (output) INTEGER array, dimension (N) */
|
|
|
|
/* The pivot indices that define the permutation matrix P; */
|
|
|
|
/* row i of the matrix was interchanged with row IPIV(i). */
|
|
|
|
|
|
|
|
/* B (input/output) REAL array, dimension (LDB,NRHS) */
|
|
|
|
/* On entry, the N-by-NRHS matrix of right hand side matrix B. */
|
|
|
|
/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
|
|
|
|
|
|
|
|
/* LDB (input) INTEGER */
|
|
|
|
/* The leading dimension of the array B. LDB >= max(1,N). */
|
|
|
|
|
|
|
|
/* INFO (output) INTEGER */
|
|
|
|
/* = 0: successful exit */
|
|
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
|
|
/* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */
|
|
|
|
/* has been completed, but the factor U is exactly */
|
|
|
|
/* singular, so the solution could not be computed. */
|
|
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
/* .. External Subroutines .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
a_dim1 = *lda;
|
|
|
|
a_offset = 1 + a_dim1;
|
|
|
|
a -= a_offset;
|
|
|
|
--ipiv;
|
|
|
|
b_dim1 = *ldb;
|
|
|
|
b_offset = 1 + b_dim1;
|
|
|
|
b -= b_offset;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
*info = 0;
|
|
|
|
if (*n < 0) {
|
|
|
|
*info = -1;
|
|
|
|
} else if (*nrhs < 0) {
|
|
|
|
*info = -2;
|
|
|
|
} else if (*lda < max(1,*n)) {
|
|
|
|
*info = -4;
|
|
|
|
} else if (*ldb < max(1,*n)) {
|
|
|
|
*info = -7;
|
|
|
|
}
|
|
|
|
if (*info != 0) {
|
|
|
|
i__1 = -(*info);
|
|
|
|
xerbla_("SGESV ", &i__1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute the LU factorization of A. */
|
|
|
|
|
|
|
|
sgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
|
|
|
|
if (*info == 0) {
|
|
|
|
|
|
|
|
/* Solve the system A*X = B, overwriting B with X. */
|
|
|
|
|
|
|
|
sgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[
|
|
|
|
b_offset], ldb, info);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of SGESV */
|
|
|
|
|
|
|
|
} /* sgesv_ */
|