2010-05-11 19:44:00 +02:00
|
|
|
/***********************************************************************
|
|
|
|
* Software License Agreement (BSD License)
|
|
|
|
*
|
|
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
|
|
*
|
|
|
|
* THE BSD LICENSE
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*************************************************************************/
|
|
|
|
|
|
|
|
#ifndef DATASET_H
|
|
|
|
#define DATASET_H
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <random.h>
|
|
|
|
|
|
|
|
|
2010-05-21 22:37:05 +02:00
|
|
|
namespace cvflann
|
2010-05-11 19:44:00 +02:00
|
|
|
{
|
|
|
|
/**
|
|
|
|
* Class implementing a generic rectangular dataset.
|
|
|
|
*/
|
|
|
|
template <typename T>
|
|
|
|
class Matrix {
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Flag showing if the class owns its data storage.
|
|
|
|
*/
|
|
|
|
bool ownData;
|
|
|
|
|
|
|
|
void shallow_copy(const Matrix& rhs)
|
|
|
|
{
|
|
|
|
data = rhs.data;
|
|
|
|
rows = rhs.rows;
|
|
|
|
cols = rhs.cols;
|
|
|
|
ownData = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
long rows;
|
|
|
|
long cols;
|
|
|
|
T* data;
|
|
|
|
|
|
|
|
|
|
|
|
Matrix(long rows_, long cols_, T* data_ = NULL) :
|
|
|
|
ownData(false), rows(rows_), cols(cols_), data(data_)
|
|
|
|
{
|
|
|
|
if (data_==NULL) {
|
|
|
|
data = new T[rows*cols];
|
|
|
|
ownData = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Matrix(const Matrix& d)
|
|
|
|
{
|
|
|
|
shallow_copy(d);
|
|
|
|
}
|
|
|
|
|
|
|
|
const Matrix& operator=(const Matrix& rhs)
|
|
|
|
{
|
|
|
|
if (this!=&rhs) {
|
|
|
|
shallow_copy(rhs);
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
~Matrix()
|
|
|
|
{
|
|
|
|
if (ownData) {
|
|
|
|
delete[] data;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Operator that return a (pointer to a) row of the data.
|
|
|
|
*/
|
|
|
|
T* operator[](long index)
|
|
|
|
{
|
|
|
|
return data+index*cols;
|
|
|
|
}
|
|
|
|
|
|
|
|
T* operator[](long index) const
|
|
|
|
{
|
|
|
|
return data+index*cols;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Matrix<T>* sample(long size, bool remove = false)
|
|
|
|
{
|
|
|
|
UniqueRandom rand(rows);
|
|
|
|
Matrix<T> *newSet = new Matrix<T>(size,cols);
|
|
|
|
|
|
|
|
T *src,*dest;
|
|
|
|
for (long i=0;i<size;++i) {
|
|
|
|
long r = rand.next();
|
|
|
|
dest = (*newSet)[i];
|
|
|
|
src = (*this)[r];
|
|
|
|
for (long j=0;j<cols;++j) {
|
|
|
|
dest[j] = src[j];
|
|
|
|
}
|
|
|
|
if (remove) {
|
|
|
|
dest = (*this)[rows-i-1];
|
|
|
|
src = (*this)[r];
|
|
|
|
for (long j=0;j<cols;++j) {
|
|
|
|
swap(*src,*dest);
|
|
|
|
src++;
|
|
|
|
dest++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (remove) {
|
|
|
|
rows -= size;
|
|
|
|
}
|
|
|
|
|
|
|
|
return newSet;
|
|
|
|
}
|
|
|
|
|
|
|
|
Matrix<T>* sample(long size) const
|
|
|
|
{
|
|
|
|
UniqueRandom rand(rows);
|
|
|
|
Matrix<T> *newSet = new Matrix<T>(size,cols);
|
|
|
|
|
|
|
|
T *src,*dest;
|
|
|
|
for (long i=0;i<size;++i) {
|
|
|
|
long r = rand.next();
|
|
|
|
dest = (*newSet)[i];
|
|
|
|
src = (*this)[r];
|
|
|
|
for (long j=0;j<cols;++j) {
|
|
|
|
dest[j] = src[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return newSet;
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif //DATASET_H
|