opencv/modules/python/test/test_texture_flow.py

51 lines
1.3 KiB
Python
Raw Normal View History

#!/usr/bin/env python
'''
Texture flow direction estimation.
Sample shows how cv2.cornerEigenValsAndVecs function can be used
to estimate image texture flow direction.
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
import sys
from tests_common import NewOpenCVTests
class texture_flow_test(NewOpenCVTests):
def test_texture_flow(self):
2016-02-25 17:25:24 +03:00
img = self.get_sample('samples/cpp/pic6.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
h, w = img.shape[:2]
eigen = cv2.cornerEigenValsAndVecs(gray, 15, 3)
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
flow = eigen[:,:,2]
vis = img.copy()
vis[:] = (192 + np.uint32(vis)) / 2
d = 80
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
textureVectors = []
for x, y in np.int32(points):
textureVectors.append(np.int32(flow[y, x]*d))
eps = 0.05
testTextureVectors = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
[-38, 70], [-79, 3], [0, 0], [0, 0], [-39, 69], [-79, -1],
[0, 0], [0, 0], [0, -79], [17, -78], [-48, -63], [65, -46],
[-69, -39], [-48, -63]]
for i in range(len(testTextureVectors)):
self.assertLessEqual(cv2.norm(textureVectors[i] - testTextureVectors[i], cv2.NORM_L2), eps)