2013-03-06 01:41:02 -05:00
|
|
|
#!/usr/bin/env python
|
2012-11-23 22:57:22 +04:00
|
|
|
|
2012-10-17 03:18:30 +04:00
|
|
|
'''
|
|
|
|
Simple example of stereo image matching and point cloud generation.
|
|
|
|
|
|
|
|
Resulting .ply file cam be easily viewed using MeshLab ( http://meshlab.sourceforge.net/ )
|
|
|
|
'''
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
ply_header = '''ply
|
|
|
|
format ascii 1.0
|
|
|
|
element vertex %(vert_num)d
|
|
|
|
property float x
|
|
|
|
property float y
|
|
|
|
property float z
|
|
|
|
property uchar red
|
|
|
|
property uchar green
|
|
|
|
property uchar blue
|
|
|
|
end_header
|
|
|
|
'''
|
|
|
|
|
|
|
|
def write_ply(fn, verts, colors):
|
|
|
|
verts = verts.reshape(-1, 3)
|
|
|
|
colors = colors.reshape(-1, 3)
|
|
|
|
verts = np.hstack([verts, colors])
|
|
|
|
with open(fn, 'w') as f:
|
|
|
|
f.write(ply_header % dict(vert_num=len(verts)))
|
|
|
|
np.savetxt(f, verts, '%f %f %f %d %d %d')
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
print 'loading images...'
|
2014-09-13 18:28:41 +04:00
|
|
|
imgL = cv2.pyrDown( cv2.imread('../data/aloeL.jpg') ) # downscale images for faster processing
|
|
|
|
imgR = cv2.pyrDown( cv2.imread('../data/aloeR.jpg') )
|
2012-10-17 03:18:30 +04:00
|
|
|
|
|
|
|
# disparity range is tuned for 'aloe' image pair
|
|
|
|
window_size = 3
|
|
|
|
min_disp = 16
|
|
|
|
num_disp = 112-min_disp
|
2015-01-01 10:30:44 +01:00
|
|
|
stereo = cv2.StereoSGBM_create(minDisparity = min_disp,
|
2012-10-17 03:18:30 +04:00
|
|
|
numDisparities = num_disp,
|
2015-01-01 10:30:44 +01:00
|
|
|
blockSize = 16,
|
2012-10-17 03:18:30 +04:00
|
|
|
P1 = 8*3*window_size**2,
|
|
|
|
P2 = 32*3*window_size**2,
|
2015-01-01 10:30:44 +01:00
|
|
|
disp12MaxDiff = 1,
|
|
|
|
uniquenessRatio = 10,
|
|
|
|
speckleWindowSize = 100,
|
|
|
|
speckleRange = 32
|
2012-10-17 03:18:30 +04:00
|
|
|
)
|
|
|
|
|
|
|
|
print 'computing disparity...'
|
|
|
|
disp = stereo.compute(imgL, imgR).astype(np.float32) / 16.0
|
|
|
|
|
|
|
|
print 'generating 3d point cloud...',
|
|
|
|
h, w = imgL.shape[:2]
|
|
|
|
f = 0.8*w # guess for focal length
|
|
|
|
Q = np.float32([[1, 0, 0, -0.5*w],
|
|
|
|
[0,-1, 0, 0.5*h], # turn points 180 deg around x-axis,
|
|
|
|
[0, 0, 0, -f], # so that y-axis looks up
|
|
|
|
[0, 0, 1, 0]])
|
|
|
|
points = cv2.reprojectImageTo3D(disp, Q)
|
|
|
|
colors = cv2.cvtColor(imgL, cv2.COLOR_BGR2RGB)
|
|
|
|
mask = disp > disp.min()
|
|
|
|
out_points = points[mask]
|
|
|
|
out_colors = colors[mask]
|
|
|
|
out_fn = 'out.ply'
|
|
|
|
write_ply('out.ply', out_points, out_colors)
|
|
|
|
print '%s saved' % 'out.ply'
|
|
|
|
|
|
|
|
cv2.imshow('left', imgL)
|
|
|
|
cv2.imshow('disparity', (disp-min_disp)/num_disp)
|
|
|
|
cv2.waitKey()
|
|
|
|
cv2.destroyAllWindows()
|