2016-05-11 08:56:42 +02:00
////////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
////////////////////////////////////////////////////////////////////////////////////////
/*****************************************************************************************************
Software for visualising cascade classifier models trained by OpenCV and to get a better
understanding of the used features .
USAGE :
2016-07-12 07:38:52 +02:00
. / opencv_visualisation - - model = < model . xml > - - image = < ref . png > - - data = < video output folder >
2016-05-11 08:56:42 +02:00
Created by : Puttemans Steven - April 2016
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# include <opencv2/core.hpp>
# include <opencv2/highgui.hpp>
# include <opencv2/imgproc.hpp>
# include <opencv2/imgcodecs.hpp>
# include <opencv2/videoio.hpp>
# include <fstream>
# include <iostream>
using namespace std ;
using namespace cv ;
struct rect_data {
int x ;
int y ;
int w ;
int h ;
float weight ;
} ;
2016-07-27 11:39:50 +02:00
static void printLimits ( ) {
cerr < < " Limits of the current interface: " < < endl ;
cerr < < " - Only handles cascade classifier models, trained with the opencv_traincascade tool, containing stumps as decision trees [default settings]. " < < endl ;
cerr < < " - The image provided needs to be a sample window with the original model dimensions, passed to the --image parameter. " < < endl ;
cerr < < " - ONLY handles HAAR and LBP features. " < < endl ;
}
2016-05-11 08:56:42 +02:00
int main ( int argc , const char * * argv )
{
2016-07-12 07:38:52 +02:00
CommandLineParser parser ( argc , argv ,
" { help h usage ? | | show this message } "
" { image i | | (required) path to reference image } "
" { model m | | (required) path to cascade xml file } "
" { data d | | (optional) path to video output folder } "
) ;
2016-05-11 08:56:42 +02:00
// Read in the input arguments
2016-07-12 07:38:52 +02:00
if ( parser . has ( " help " ) ) {
parser . printMessage ( ) ;
2016-07-27 11:39:50 +02:00
printLimits ( ) ;
2016-07-12 07:38:52 +02:00
return 0 ;
}
string model ( parser . get < string > ( " model " ) ) ;
string output_folder ( parser . get < string > ( " data " ) ) ;
string image_ref = ( parser . get < string > ( " image " ) ) ;
if ( model . empty ( ) | | image_ref . empty ( ) ) {
parser . printMessage ( ) ;
2016-07-27 11:39:50 +02:00
printLimits ( ) ;
2016-07-12 07:38:52 +02:00
return - 1 ;
2016-05-11 08:56:42 +02:00
}
// Value for timing
// You can increase this to have a better visualisation during the generation
int timing = 1 ;
// Value for cols of storing elements
int cols_prefered = 5 ;
// Open the XML model
FileStorage fs ;
2016-07-12 07:38:52 +02:00
bool model_ok = fs . open ( model , FileStorage : : READ ) ;
if ( ! model_ok ) {
cerr < < " the cascade file ' " < < model < < " ' could not be loaded. " < < endl ;
return - 1 ;
}
2016-05-11 08:56:42 +02:00
// Get a the required information
// First decide which feature type we are using
FileNode cascade = fs [ " cascade " ] ;
string feature_type = cascade [ " featureType " ] ;
bool haar = false , lbp = false ;
if ( feature_type . compare ( " HAAR " ) = = 0 ) {
haar = true ;
}
if ( feature_type . compare ( " LBP " ) = = 0 ) {
lbp = true ;
}
if ( feature_type . compare ( " HAAR " ) ! = 0 & & feature_type . compare ( " LBP " ) ) {
cerr < < " The model is not an HAAR or LBP feature based model! " < < endl ;
cerr < < " Please select a model that can be visualized by the software. " < < endl ;
return - 1 ;
}
// We make a visualisation mask - which increases the window to make it at least a bit more visible
int resize_factor = 10 ;
int resize_storage_factor = 10 ;
Mat reference_image = imread ( image_ref , IMREAD_GRAYSCALE ) ;
2016-07-12 07:38:52 +02:00
if ( reference_image . empty ( ) ) {
cerr < < " the reference image ' " < < image_ref < < " '' could not be loaded. " < < endl ;
return - 1 ;
}
2016-05-11 08:56:42 +02:00
Mat visualization ;
resize ( reference_image , visualization , Size ( reference_image . cols * resize_factor , reference_image . rows * resize_factor ) ) ;
// First recover for each stage the number of weak features and their index
// Important since it is NOT sequential when using LBP features
vector < vector < int > > stage_features ;
FileNode stages = cascade [ " stages " ] ;
FileNodeIterator it_stages = stages . begin ( ) , it_stages_end = stages . end ( ) ;
int idx = 0 ;
for ( ; it_stages ! = it_stages_end ; it_stages + + , idx + + ) {
vector < int > current_feature_indexes ;
FileNode weak_classifiers = ( * it_stages ) [ " weakClassifiers " ] ;
FileNodeIterator it_weak = weak_classifiers . begin ( ) , it_weak_end = weak_classifiers . end ( ) ;
vector < int > values ;
for ( int idy = 0 ; it_weak ! = it_weak_end ; it_weak + + , idy + + ) {
( * it_weak ) [ " internalNodes " ] > > values ;
current_feature_indexes . push_back ( ( int ) values [ 2 ] ) ;
}
stage_features . push_back ( current_feature_indexes ) ;
}
// If the output option has been chosen than we will store a combined image plane for
// each stage, containing all weak classifiers for that stage.
bool draw_planes = false ;
stringstream output_video ;
output_video < < output_folder < < " model_visualization.avi " ;
VideoWriter result_video ;
if ( output_folder . compare ( " " ) ! = 0 ) {
draw_planes = true ;
result_video . open ( output_video . str ( ) , VideoWriter : : fourcc ( ' X ' , ' V ' , ' I ' , ' D ' ) , 15 , Size ( reference_image . cols * resize_factor , reference_image . rows * resize_factor ) , false ) ;
}
if ( haar ) {
// Grab the corresponding features dimensions and weights
FileNode features = cascade [ " features " ] ;
vector < vector < rect_data > > feature_data ;
FileNodeIterator it_features = features . begin ( ) , it_features_end = features . end ( ) ;
for ( int idf = 0 ; it_features ! = it_features_end ; it_features + + , idf + + ) {
vector < rect_data > current_feature_rectangles ;
FileNode rectangles = ( * it_features ) [ " rects " ] ;
int nrects = ( int ) rectangles . size ( ) ;
for ( int k = 0 ; k < nrects ; k + + ) {
rect_data current_data ;
FileNode single_rect = rectangles [ k ] ;
current_data . x = ( int ) single_rect [ 0 ] ;
current_data . y = ( int ) single_rect [ 1 ] ;
current_data . w = ( int ) single_rect [ 2 ] ;
current_data . h = ( int ) single_rect [ 3 ] ;
current_data . weight = ( float ) single_rect [ 4 ] ;
current_feature_rectangles . push_back ( current_data ) ;
}
feature_data . push_back ( current_feature_rectangles ) ;
}
// Loop over each possible feature on its index, visualise on the mask and wait a bit,
// then continue to the next feature.
// If visualisations should be stored then do the in between calculations
Mat image_plane ;
Mat metadata = Mat : : zeros ( 150 , 1000 , CV_8UC1 ) ;
vector < rect_data > current_rects ;
for ( int sid = 0 ; sid < ( int ) stage_features . size ( ) ; sid + + ) {
if ( draw_planes ) {
int features_nmbr = ( int ) stage_features [ sid ] . size ( ) ;
int cols = cols_prefered ;
int rows = features_nmbr / cols ;
if ( ( features_nmbr % cols ) > 0 ) {
rows + + ;
}
image_plane = Mat : : zeros ( reference_image . rows * resize_storage_factor * rows , reference_image . cols * resize_storage_factor * cols , CV_8UC1 ) ;
}
for ( int fid = 0 ; fid < ( int ) stage_features [ sid ] . size ( ) ; fid + + ) {
stringstream meta1 , meta2 ;
meta1 < < " Stage " < < sid < < " / Feature " < < fid ;
meta2 < < " Rectangles: " ;
Mat temp_window = visualization . clone ( ) ;
Mat temp_metadata = metadata . clone ( ) ;
int current_feature_index = stage_features [ sid ] [ fid ] ;
current_rects = feature_data [ current_feature_index ] ;
Mat single_feature = reference_image . clone ( ) ;
resize ( single_feature , single_feature , Size ( ) , resize_storage_factor , resize_storage_factor ) ;
for ( int i = 0 ; i < ( int ) current_rects . size ( ) ; i + + ) {
rect_data local = current_rects [ i ] ;
if ( draw_planes ) {
if ( local . weight > = 0 ) {
rectangle ( single_feature , Rect ( local . x * resize_storage_factor , local . y * resize_storage_factor , local . w * resize_storage_factor , local . h * resize_storage_factor ) , Scalar ( 0 ) , FILLED ) ;
} else {
rectangle ( single_feature , Rect ( local . x * resize_storage_factor , local . y * resize_storage_factor , local . w * resize_storage_factor , local . h * resize_storage_factor ) , Scalar ( 255 ) , FILLED ) ;
}
}
Rect part ( local . x * resize_factor , local . y * resize_factor , local . w * resize_factor , local . h * resize_factor ) ;
meta2 < < part < < " (w " < < local . weight < < " ) " ;
if ( local . weight > = 0 ) {
rectangle ( temp_window , part , Scalar ( 0 ) , FILLED ) ;
} else {
rectangle ( temp_window , part , Scalar ( 255 ) , FILLED ) ;
}
}
imshow ( " features " , temp_window ) ;
putText ( temp_window , meta1 . str ( ) , Point ( 15 , 15 ) , FONT_HERSHEY_SIMPLEX , 0.5 , Scalar ( 255 ) ) ;
result_video . write ( temp_window ) ;
// Copy the feature image if needed
if ( draw_planes ) {
single_feature . copyTo ( image_plane ( Rect ( 0 + ( fid % cols_prefered ) * single_feature . cols , 0 + ( fid / cols_prefered ) * single_feature . rows , single_feature . cols , single_feature . rows ) ) ) ;
}
putText ( temp_metadata , meta1 . str ( ) , Point ( 15 , 15 ) , FONT_HERSHEY_SIMPLEX , 0.5 , Scalar ( 255 ) ) ;
putText ( temp_metadata , meta2 . str ( ) , Point ( 15 , 40 ) , FONT_HERSHEY_SIMPLEX , 0.5 , Scalar ( 255 ) ) ;
imshow ( " metadata " , temp_metadata ) ;
waitKey ( timing ) ;
}
//Store the stage image if needed
if ( draw_planes ) {
stringstream save_location ;
save_location < < output_folder < < " stage_ " < < sid < < " .png " ;
imwrite ( save_location . str ( ) , image_plane ) ;
}
}
}
if ( lbp ) {
// Grab the corresponding features dimensions and weights
FileNode features = cascade [ " features " ] ;
vector < Rect > feature_data ;
FileNodeIterator it_features = features . begin ( ) , it_features_end = features . end ( ) ;
for ( int idf = 0 ; it_features ! = it_features_end ; it_features + + , idf + + ) {
FileNode rectangle = ( * it_features ) [ " rect " ] ;
Rect current_feature ( ( int ) rectangle [ 0 ] , ( int ) rectangle [ 1 ] , ( int ) rectangle [ 2 ] , ( int ) rectangle [ 3 ] ) ;
feature_data . push_back ( current_feature ) ;
}
// Loop over each possible feature on its index, visualise on the mask and wait a bit,
// then continue to the next feature.
Mat image_plane ;
Mat metadata = Mat : : zeros ( 150 , 1000 , CV_8UC1 ) ;
for ( int sid = 0 ; sid < ( int ) stage_features . size ( ) ; sid + + ) {
if ( draw_planes ) {
int features_nmbr = ( int ) stage_features [ sid ] . size ( ) ;
int cols = cols_prefered ;
int rows = features_nmbr / cols ;
if ( ( features_nmbr % cols ) > 0 ) {
rows + + ;
}
image_plane = Mat : : zeros ( reference_image . rows * resize_storage_factor * rows , reference_image . cols * resize_storage_factor * cols , CV_8UC1 ) ;
}
for ( int fid = 0 ; fid < ( int ) stage_features [ sid ] . size ( ) ; fid + + ) {
stringstream meta1 , meta2 ;
meta1 < < " Stage " < < sid < < " / Feature " < < fid ;
meta2 < < " Rectangle: " ;
Mat temp_window = visualization . clone ( ) ;
Mat temp_metadata = metadata . clone ( ) ;
int current_feature_index = stage_features [ sid ] [ fid ] ;
Rect current_rect = feature_data [ current_feature_index ] ;
Mat single_feature = reference_image . clone ( ) ;
resize ( single_feature , single_feature , Size ( ) , resize_storage_factor , resize_storage_factor ) ;
// VISUALISATION
// The rectangle is the top left one of a 3x3 block LBP constructor
Rect resized ( current_rect . x * resize_factor , current_rect . y * resize_factor , current_rect . width * resize_factor , current_rect . height * resize_factor ) ;
meta2 < < resized ;
// Top left
rectangle ( temp_window , resized , Scalar ( 255 ) , 1 ) ;
// Top middle
rectangle ( temp_window , Rect ( resized . x + resized . width , resized . y , resized . width , resized . height ) , Scalar ( 255 ) , 1 ) ;
// Top right
rectangle ( temp_window , Rect ( resized . x + 2 * resized . width , resized . y , resized . width , resized . height ) , Scalar ( 255 ) , 1 ) ;
// Middle left
rectangle ( temp_window , Rect ( resized . x , resized . y + resized . height , resized . width , resized . height ) , Scalar ( 255 ) , 1 ) ;
// Middle middle
rectangle ( temp_window , Rect ( resized . x + resized . width , resized . y + resized . height , resized . width , resized . height ) , Scalar ( 255 ) , FILLED ) ;
// Middle right
rectangle ( temp_window , Rect ( resized . x + 2 * resized . width , resized . y + resized . height , resized . width , resized . height ) , Scalar ( 255 ) , 1 ) ;
// Bottom left
rectangle ( temp_window , Rect ( resized . x , resized . y + 2 * resized . height , resized . width , resized . height ) , Scalar ( 255 ) , 1 ) ;
// Bottom middle
rectangle ( temp_window , Rect ( resized . x + resized . width , resized . y + 2 * resized . height , resized . width , resized . height ) , Scalar ( 255 ) , 1 ) ;
// Bottom right
rectangle ( temp_window , Rect ( resized . x + 2 * resized . width , resized . y + 2 * resized . height , resized . width , resized . height ) , Scalar ( 255 ) , 1 ) ;
if ( draw_planes ) {
Rect resized_inner ( current_rect . x * resize_storage_factor , current_rect . y * resize_storage_factor , current_rect . width * resize_storage_factor , current_rect . height * resize_storage_factor ) ;
// Top left
rectangle ( single_feature , resized_inner , Scalar ( 255 ) , 1 ) ;
// Top middle
rectangle ( single_feature , Rect ( resized_inner . x + resized_inner . width , resized_inner . y , resized_inner . width , resized_inner . height ) , Scalar ( 255 ) , 1 ) ;
// Top right
rectangle ( single_feature , Rect ( resized_inner . x + 2 * resized_inner . width , resized_inner . y , resized_inner . width , resized_inner . height ) , Scalar ( 255 ) , 1 ) ;
// Middle left
rectangle ( single_feature , Rect ( resized_inner . x , resized_inner . y + resized_inner . height , resized_inner . width , resized_inner . height ) , Scalar ( 255 ) , 1 ) ;
// Middle middle
rectangle ( single_feature , Rect ( resized_inner . x + resized_inner . width , resized_inner . y + resized_inner . height , resized_inner . width , resized_inner . height ) , Scalar ( 255 ) , FILLED ) ;
// Middle right
rectangle ( single_feature , Rect ( resized_inner . x + 2 * resized_inner . width , resized_inner . y + resized_inner . height , resized_inner . width , resized_inner . height ) , Scalar ( 255 ) , 1 ) ;
// Bottom left
rectangle ( single_feature , Rect ( resized_inner . x , resized_inner . y + 2 * resized_inner . height , resized_inner . width , resized_inner . height ) , Scalar ( 255 ) , 1 ) ;
// Bottom middle
rectangle ( single_feature , Rect ( resized_inner . x + resized_inner . width , resized_inner . y + 2 * resized_inner . height , resized_inner . width , resized_inner . height ) , Scalar ( 255 ) , 1 ) ;
// Bottom right
rectangle ( single_feature , Rect ( resized_inner . x + 2 * resized_inner . width , resized_inner . y + 2 * resized_inner . height , resized_inner . width , resized_inner . height ) , Scalar ( 255 ) , 1 ) ;
single_feature . copyTo ( image_plane ( Rect ( 0 + ( fid % cols_prefered ) * single_feature . cols , 0 + ( fid / cols_prefered ) * single_feature . rows , single_feature . cols , single_feature . rows ) ) ) ;
}
putText ( temp_metadata , meta1 . str ( ) , Point ( 15 , 15 ) , FONT_HERSHEY_SIMPLEX , 0.5 , Scalar ( 255 ) ) ;
putText ( temp_metadata , meta2 . str ( ) , Point ( 15 , 40 ) , FONT_HERSHEY_SIMPLEX , 0.5 , Scalar ( 255 ) ) ;
imshow ( " metadata " , temp_metadata ) ;
imshow ( " features " , temp_window ) ;
putText ( temp_window , meta1 . str ( ) , Point ( 15 , 15 ) , FONT_HERSHEY_SIMPLEX , 0.5 , Scalar ( 255 ) ) ;
result_video . write ( temp_window ) ;
waitKey ( timing ) ;
}
//Store the stage image if needed
if ( draw_planes ) {
stringstream save_location ;
save_location < < output_folder < < " stage_ " < < sid < < " .png " ;
imwrite ( save_location . str ( ) , image_plane ) ;
}
}
}
return 0 ;
}