opencv/modules/shape/test/test_hausdorff.cpp

281 lines
10 KiB
C++
Raw Normal View History

2013-09-23 19:00:49 +02:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <stdlib.h>
using namespace cv;
using namespace std;
const int NSN=5;//10;//20; //number of shapes per class
const float CURRENT_MAX_ACCUR=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary
class CV_HaussTest : public cvtest::BaseTest
{
public:
CV_HaussTest();
~CV_HaussTest();
protected:
void run(int);
private:
float computeShapeDistance(vector<Point> &query1, vector<Point> &query2,
vector<Point> &query3, vector<Point> &testq);
vector <Point> convertContourType(const Mat& currentQuery, int n=180);
vector<Point2f> normalizeContour(const vector <Point>& contour);
void listShapeNames( vector<string> &listHeaders);
void mpegTest();
void displayMPEGResults();
};
CV_HaussTest::CV_HaussTest()
{
}
CV_HaussTest::~CV_HaussTest()
{
}
vector<Point2f> CV_HaussTest::normalizeContour(const vector<Point> &contour)
{
vector<Point2f> output(contour.size());
Mat disMat(contour.size(),contour.size(),CV_32F);
Point2f meanpt(0,0);
float meanVal=1;
for (size_t ii=0; ii<contour.size(); ii++)
{
for (size_t jj=0; jj<contour.size(); jj++)
{
if (ii==jj) disMat.at<float>(ii,jj)=0;
else
{
disMat.at<float>(ii,jj)=
float(fabs(double(contour[ii].x*contour[jj].x)))+float(fabs(double(contour[ii].y*contour[jj].y)));
2013-09-23 19:00:49 +02:00
}
}
meanpt.x+=contour[ii].x;
meanpt.y+=contour[ii].y;
}
meanpt.x/=contour.size();
meanpt.y/=contour.size();
meanVal=float(cv::mean(disMat)[0]);
2013-09-23 19:00:49 +02:00
for (size_t ii=0; ii<contour.size(); ii++)
{
output[ii].x = (contour[ii].x-meanpt.x)/meanVal;
output[ii].y = (contour[ii].y-meanpt.y)/meanVal;
}
return output;
}
void CV_HaussTest::listShapeNames( vector<string> &listHeaders)
{
listHeaders.push_back("apple"); //ok
listHeaders.push_back("children"); // ok
listHeaders.push_back("device7"); // ok
listHeaders.push_back("Heart"); // ok
listHeaders.push_back("teddy"); // ok
}
vector <Point> CV_HaussTest::convertContourType(const Mat& currentQuery, int n)
{
vector<vector<Point> > _contoursQuery;
vector <Point> contoursQuery;
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE);
for (size_t border=0; border<_contoursQuery.size(); border++)
{
for (size_t p=0; p<_contoursQuery[border].size(); p++)
{
contoursQuery.push_back(_contoursQuery[border][p]);
}
}
// In case actual number of points is less than n
for (int add=contoursQuery.size()-1; add<n; add++)
{
contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values
}
// Uniformly sampling
random_shuffle(contoursQuery.begin(), contoursQuery.end());
int nStart=n;
vector<Point> cont;
for (int i=0; i<nStart; i++)
{
cont.push_back(contoursQuery[i]);
}
return cont;
}
float CV_HaussTest::computeShapeDistance(vector <Point>& query1, vector <Point>& query2,
vector <Point>& query3, vector <Point>& testq)
{
Ptr <HausdorffDistanceExtractor> haus = createHausdorffDistanceExtractor();
return std::min(haus->computeDistance(query1,testq), std::min(haus->computeDistance(query2,testq),
haus->computeDistance(query3,testq)));
}
void CV_HaussTest::mpegTest()
{
string baseTestFolder="shape/mpeg_test/";
string path = cvtest::TS::ptr()->get_data_path() + baseTestFolder;
vector<string> namesHeaders;
listShapeNames(namesHeaders);
// distance matrix //
Mat distanceMat=Mat::zeros(NSN*namesHeaders.size(), NSN*namesHeaders.size(), CV_32F);
// query contours (normal v flipped, h flipped) and testing contour //
vector<Point> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting;
// reading query and computing its properties //
int counter=0;
const int loops=NSN*namesHeaders.size()*NSN*namesHeaders.size();
for (size_t n=0; n<namesHeaders.size(); n++)
{
for (int i=1; i<=NSN; i++)
{
// read current image //
stringstream thepathandname;
thepathandname<<path+namesHeaders[n]<<"-"<<i<<".png";
Mat currentQuery, flippedHQuery, flippedVQuery;
currentQuery=imread(thepathandname.str(), IMREAD_GRAYSCALE);
flip(currentQuery, flippedHQuery, 0);
flip(currentQuery, flippedVQuery, 1);
// compute border of the query and its flipped versions //
vector<Point> origContour;
contoursQuery1=convertContourType(currentQuery);
origContour=contoursQuery1;
contoursQuery2=convertContourType(flippedHQuery);
contoursQuery3=convertContourType(flippedVQuery);
// compare with all the rest of the images: testing //
for (size_t nt=0; nt<namesHeaders.size(); nt++)
{
for (int it=1; it<=NSN; it++)
{
/* skip self-comparisson */
counter++;
if (nt==n && it==i)
{
distanceMat.at<float>(NSN*n+i-1,
NSN*nt+it-1)=0;
continue;
}
// read testing image //
stringstream thetestpathandname;
thetestpathandname<<path+namesHeaders[nt]<<"-"<<it<<".png";
Mat currentTest;
currentTest=imread(thetestpathandname.str().c_str(), 0);
// compute border of the testing //
contoursTesting=convertContourType(currentTest);
// compute shape distance //
std::cout<<std::endl<<"Progress: "<<counter<<"/"<<loops<<": "<<100*double(counter)/loops<<"% *******"<<std::endl;
std::cout<<"Computing shape distance between "<<namesHeaders[n]<<i<<
" and "<<namesHeaders[nt]<<it<<": ";
distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)=
computeShapeDistance(contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting);
std::cout<<distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)<<std::endl;
}
}
}
}
// save distance matrix //
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::WRITE);
fs << "distanceMat" << distanceMat;
}
const int FIRST_MANY=2*NSN;
void CV_HaussTest::displayMPEGResults()
{
string baseTestFolder="shape/mpeg_test/";
Mat distanceMat;
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::READ);
vector<string> namesHeaders;
listShapeNames(namesHeaders);
// Read generated MAT //
fs["distanceMat"]>>distanceMat;
int corrects=0;
int divi=0;
for (int row=0; row<distanceMat.rows; row++)
{
if (row%NSN==0) //another group
{
divi+=NSN;
}
for (int col=divi-NSN; col<divi; col++)
{
int nsmall=0;
for (int i=0; i<distanceMat.cols; i++)
{
if (distanceMat.at<float>(row,col)>distanceMat.at<float>(row,i))
{
nsmall++;
}
}
if (nsmall<=FIRST_MANY)
{
corrects++;
}
}
}
float porc = 100*float(corrects)/(NSN*distanceMat.rows);
std::cout<<"%="<<porc<<std::endl;
if (porc >= CURRENT_MAX_ACCUR)
ts->set_failed_test_info(cvtest::TS::OK);
else
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
void CV_HaussTest::run(int /* */)
{
mpegTest();
displayMPEGResults();
ts->set_failed_test_info(cvtest::TS::OK);
2013-09-23 19:00:49 +02:00
}
TEST(Hauss, regression) { CV_HaussTest test; test.safe_run(); }