286 lines
8.8 KiB
C++
286 lines
8.8 KiB
C++
|
#include <cstdio>
|
||
|
#define HAVE_CUDA 1
|
||
|
#include <opencv2/core/core.hpp>
|
||
|
#include <opencv2/gpu/gpu.hpp>
|
||
|
#include <opencv2/highgui/highgui.hpp>
|
||
|
#include <opencv2/video/video.hpp>
|
||
|
#include <opencv2/ts/ts.hpp>
|
||
|
#include <opencv2/ts/ts_perf.hpp>
|
||
|
|
||
|
static void printOsInfo()
|
||
|
{
|
||
|
#if defined _WIN32
|
||
|
# if defined _WIN64
|
||
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x64.\n[----------]\n"); fflush(stdout);
|
||
|
# else
|
||
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x32.\n[----------]\n"); fflush(stdout);
|
||
|
# endif
|
||
|
#elif defined linux
|
||
|
# if defined _LP64
|
||
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x64.\n[----------]\n"); fflush(stdout);
|
||
|
# else
|
||
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x32.\n[----------]\n"); fflush(stdout);
|
||
|
# endif
|
||
|
#elif defined __APPLE__
|
||
|
# if defined _LP64
|
||
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x64.\n[----------]\n"); fflush(stdout);
|
||
|
# else
|
||
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x32.\n[----------]\n"); fflush(stdout);
|
||
|
# endif
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void printCudaInfo()
|
||
|
{
|
||
|
const int deviceCount = cv::gpu::getCudaEnabledDeviceCount();
|
||
|
|
||
|
printf("[----------]\n"); fflush(stdout);
|
||
|
printf("[ GPU INFO ] \tCUDA device count:: %d.\n", deviceCount); fflush(stdout);
|
||
|
printf("[----------]\n"); fflush(stdout);
|
||
|
|
||
|
for (int i = 0; i < deviceCount; ++i)
|
||
|
{
|
||
|
cv::gpu::DeviceInfo info(i);
|
||
|
|
||
|
printf("[----------]\n"); fflush(stdout);
|
||
|
printf("[ DEVICE ] \t# %d %s.\n", i, info.name().c_str()); fflush(stdout);
|
||
|
printf("[ ] \tCompute capability: %d.%d\n", info.majorVersion(), info.minorVersion()); fflush(stdout);
|
||
|
printf("[ ] \tMulti Processor Count: %d\n", info.multiProcessorCount()); fflush(stdout);
|
||
|
printf("[ ] \tTotal memory: %d Mb\n", static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0)); fflush(stdout);
|
||
|
printf("[ ] \tFree memory: %d Mb\n", static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0)); fflush(stdout);
|
||
|
if (!info.isCompatible())
|
||
|
printf("[ GPU INFO ] \tThis device is NOT compatible with current GPU module build\n");
|
||
|
printf("[----------]\n"); fflush(stdout);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, char* argv[])
|
||
|
{
|
||
|
printOsInfo();
|
||
|
printCudaInfo();
|
||
|
|
||
|
perf::Regression::Init("nv_perf_test");
|
||
|
perf::TestBase::Init(argc, argv);
|
||
|
testing::InitGoogleTest(&argc, argv);
|
||
|
|
||
|
return RUN_ALL_TESTS();
|
||
|
}
|
||
|
|
||
|
//////////////////////////////////////////////////////////
|
||
|
// Tests
|
||
|
|
||
|
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
|
||
|
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name
|
||
|
|
||
|
DEF_PARAM_TEST_1(Depth, perf::MatDepth);
|
||
|
|
||
|
PERF_TEST_P(Depth, GoodFeaturesToTrack, testing::Values(CV_8U, CV_16U))
|
||
|
{
|
||
|
declare.time(60);
|
||
|
|
||
|
const int depth = GetParam();
|
||
|
const int maxCorners = 5000;
|
||
|
const double qualityLevel = 0.05;
|
||
|
const int minDistance = 5;
|
||
|
const int blockSize = 3;
|
||
|
const bool useHarrisDetector = true;
|
||
|
const double k = 0.05;
|
||
|
|
||
|
const std::string fileName = "im1_1280x800.jpg";
|
||
|
|
||
|
cv::Mat src = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
|
||
|
if (src.empty())
|
||
|
FAIL() << "Unable to load source image [" << fileName << "]";
|
||
|
|
||
|
if (depth != CV_8U)
|
||
|
src.convertTo(src, depth);
|
||
|
|
||
|
cv::Mat mask(src.size(), CV_8UC1, cv::Scalar::all(1));
|
||
|
mask(cv::Rect(0, 0, 100, 100)).setTo(cv::Scalar::all(0));
|
||
|
|
||
|
if (PERF_RUN_GPU())
|
||
|
{
|
||
|
cv::gpu::GoodFeaturesToTrackDetector_GPU d_detector(maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, k);
|
||
|
|
||
|
cv::gpu::GpuMat d_src(src);
|
||
|
cv::gpu::GpuMat d_mask(mask);
|
||
|
cv::gpu::GpuMat d_pts;
|
||
|
|
||
|
d_detector(d_src, d_pts, d_mask);
|
||
|
|
||
|
TEST_CYCLE()
|
||
|
{
|
||
|
d_detector(d_src, d_pts, d_mask);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cv::Mat pts;
|
||
|
|
||
|
cv::goodFeaturesToTrack(src, pts, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k);
|
||
|
|
||
|
TEST_CYCLE()
|
||
|
{
|
||
|
cv::goodFeaturesToTrack(src, pts, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
SANITY_CHECK(0);
|
||
|
}
|
||
|
|
||
|
DEF_PARAM_TEST(Depth_GraySource, perf::MatDepth, bool);
|
||
|
|
||
|
PERF_TEST_P(Depth_GraySource, PyrLKOpticalFlowSparse, testing::Combine(testing::Values(CV_8U, CV_16U), testing::Bool()))
|
||
|
{
|
||
|
declare.time(60);
|
||
|
|
||
|
const int depth = std::tr1::get<0>(GetParam());
|
||
|
const bool graySource = std::tr1::get<1>(GetParam());
|
||
|
|
||
|
// PyrLK params
|
||
|
const cv::Size winSize(15, 15);
|
||
|
const int maxLevel = 5;
|
||
|
const cv::TermCriteria criteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01);
|
||
|
|
||
|
// GoodFeaturesToTrack params
|
||
|
const int maxCorners = 5000;
|
||
|
const double qualityLevel = 0.05;
|
||
|
const int minDistance = 5;
|
||
|
const int blockSize = 3;
|
||
|
const bool useHarrisDetector = true;
|
||
|
const double k = 0.05;
|
||
|
|
||
|
const std::string fileName1 = "im1_1280x800.jpg";
|
||
|
const std::string fileName2 = "im2_1280x800.jpg";
|
||
|
|
||
|
cv::Mat src1 = cv::imread(fileName1, graySource ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||
|
if (src1.empty())
|
||
|
FAIL() << "Unable to load source image [" << fileName1 << "]";
|
||
|
|
||
|
cv::Mat src2 = cv::imread(fileName2, graySource ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
||
|
if (src2.empty())
|
||
|
FAIL() << "Unable to load source image [" << fileName2 << "]";
|
||
|
|
||
|
cv::Mat gray_src;
|
||
|
if (graySource)
|
||
|
gray_src = src1;
|
||
|
else
|
||
|
cv::cvtColor(src1, gray_src, cv::COLOR_BGR2GRAY);
|
||
|
|
||
|
cv::Mat pts;
|
||
|
cv::goodFeaturesToTrack(gray_src, pts, maxCorners, qualityLevel, minDistance, cv::noArray(), blockSize, useHarrisDetector, k);
|
||
|
|
||
|
if (depth != CV_8U)
|
||
|
{
|
||
|
src1.convertTo(src1, depth);
|
||
|
src2.convertTo(src2, depth);
|
||
|
}
|
||
|
|
||
|
if (PERF_RUN_GPU())
|
||
|
{
|
||
|
cv::gpu::GpuMat d_src1(src1);
|
||
|
cv::gpu::GpuMat d_src2(src2);
|
||
|
cv::gpu::GpuMat d_pts(pts.reshape(2, 1));
|
||
|
cv::gpu::GpuMat d_nextPts;
|
||
|
cv::gpu::GpuMat d_status;
|
||
|
|
||
|
cv::gpu::PyrLKOpticalFlow d_pyrLK;
|
||
|
d_pyrLK.winSize = winSize;
|
||
|
d_pyrLK.maxLevel = maxLevel;
|
||
|
d_pyrLK.iters = criteria.maxCount;
|
||
|
d_pyrLK.useInitialFlow = false;
|
||
|
|
||
|
d_pyrLK.sparse(d_src1, d_src2, d_pts, d_nextPts, d_status);
|
||
|
|
||
|
TEST_CYCLE()
|
||
|
{
|
||
|
d_pyrLK.sparse(d_src1, d_src2, d_pts, d_nextPts, d_status);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cv::Mat nextPts;
|
||
|
cv::Mat status;
|
||
|
|
||
|
cv::calcOpticalFlowPyrLK(src1, src2, pts, nextPts, status, cv::noArray(), winSize, maxLevel, criteria);
|
||
|
|
||
|
TEST_CYCLE()
|
||
|
{
|
||
|
cv::calcOpticalFlowPyrLK(src1, src2, pts, nextPts, status, cv::noArray(), winSize, maxLevel, criteria);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
SANITY_CHECK(0);
|
||
|
}
|
||
|
|
||
|
DEF_PARAM_TEST_1(Depth, perf::MatDepth);
|
||
|
|
||
|
PERF_TEST_P(Depth, FarnebackOpticalFlow, testing::Values(CV_8U, CV_16U))
|
||
|
{
|
||
|
declare.time(60);
|
||
|
|
||
|
const int depth = GetParam();
|
||
|
|
||
|
const double pyrScale = 0.5;
|
||
|
const int numLevels = 6;
|
||
|
const int winSize = 7;
|
||
|
const int numIters = 15;
|
||
|
const int polyN = 7;
|
||
|
const double polySigma = 1.5;
|
||
|
const int flags = cv::OPTFLOW_USE_INITIAL_FLOW;
|
||
|
|
||
|
const std::string fileName1 = "im1_1280x800.jpg";
|
||
|
const std::string fileName2 = "im2_1280x800.jpg";
|
||
|
|
||
|
cv::Mat src1 = cv::imread(fileName1, cv::IMREAD_GRAYSCALE);
|
||
|
if (src1.empty())
|
||
|
FAIL() << "Unable to load source image [" << fileName1 << "]";
|
||
|
|
||
|
cv::Mat src2 = cv::imread(fileName2, cv::IMREAD_GRAYSCALE);
|
||
|
if (src2.empty())
|
||
|
FAIL() << "Unable to load source image [" << fileName2 << "]";
|
||
|
|
||
|
if (depth != CV_8U)
|
||
|
{
|
||
|
src1.convertTo(src1, depth);
|
||
|
src2.convertTo(src2, depth);
|
||
|
}
|
||
|
|
||
|
if (PERF_RUN_GPU())
|
||
|
{
|
||
|
cv::gpu::GpuMat d_src1(src1);
|
||
|
cv::gpu::GpuMat d_src2(src2);
|
||
|
cv::gpu::GpuMat d_u(src1.size(), CV_32FC1, cv::Scalar::all(0));
|
||
|
cv::gpu::GpuMat d_v(src1.size(), CV_32FC1, cv::Scalar::all(0));
|
||
|
|
||
|
cv::gpu::FarnebackOpticalFlow d_farneback;
|
||
|
d_farneback.pyrScale = pyrScale;
|
||
|
d_farneback.numLevels = numLevels;
|
||
|
d_farneback.winSize = winSize;
|
||
|
d_farneback.numIters = numIters;
|
||
|
d_farneback.polyN = polyN;
|
||
|
d_farneback.polySigma = polySigma;
|
||
|
d_farneback.flags = flags;
|
||
|
|
||
|
d_farneback(d_src1, d_src2, d_u, d_v);
|
||
|
|
||
|
TEST_CYCLE()
|
||
|
{
|
||
|
d_farneback(d_src1, d_src2, d_u, d_v);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cv::Mat flow(src1.size(), CV_32FC2, cv::Scalar::all(0));
|
||
|
|
||
|
cv::calcOpticalFlowFarneback(src1, src2, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
|
||
|
|
||
|
TEST_CYCLE()
|
||
|
{
|
||
|
cv::calcOpticalFlowFarneback(src1, src2, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
SANITY_CHECK(0);
|
||
|
}
|