opencv/tests/cv/src/aeigenobjects.cpp

772 lines
27 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "cvtest.h"
#if 0
#include "aeigenobjects.inc"
#define __8U 8
#define __32F 32
#define MAXDIFF 1.01
#define RELDIFF 1.0e-4
typedef struct _UserData /* User data structure for callback mode */
{
void* addr1; /* Array of objects ROI start addresses */
void* addr2;
int step1; /* Step in bytes */
int step2;
CvSize size1; /* ROI or full size */
CvSize size2;
} UserData;
/* Testing parameters */
static char FuncName[] =
"cvCalcCovarMatrixEx, cvCalcEigenObjects, cvCalcDecompCoeff, cvEigenDecomposite, cvEigenProjection";
static char TestName[] = "Eigen objects functions group test";
static char TestClass[] = "Algorithm";
static int obj_number, obj_width, obj_height;
static double rel_bufSize;
/*-----------------------------=--=-=== Callback functions ===-=--=---------------------*/
int read_callback_8u( int ind, void* buf, void* userData)
{
int i, j, k = 0;
UserData* data = (UserData*)userData;
uchar* start = ((uchar**)(data->addr1))[ind];
uchar* buff = (uchar*)buf;
if( ind<0 ) return CV_BADFACTOR_ERR;
if( buf==NULL || userData==NULL ) return CV_NULLPTR_ERR;
for( i=0; i<data->size1.height; i++, start+=data->step1 )
for( j=0; j<data->size1.width; j++, k++ )
buff[k] = start[j];
return CV_NO_ERR;
}
/*----------------------*/
int read_callback_32f( int ind, void* buf, void* userData)
{
int i, j, k = 0;
UserData* data = (UserData*)userData;
float* start = ((float**)(data->addr2))[ind];
float* buff = (float*)buf;
if( ind<0 ) return CV_BADFACTOR_ERR;
if( buf==NULL || userData==NULL ) return CV_NULLPTR_ERR;
for( i=0; i<data->size2.height; i++, start+=data->step2/4 )
for( j=0; j<data->size2.width; j++, k++ )
buff[k] = start[j];
return CV_NO_ERR;
}
/*========================*/
int write_callback_8u( int ind, void* buf, void* userData)
{
int i, j, k = 0;
UserData* data = (UserData*)userData;
uchar* start = ((uchar**)(data->addr1))[ind];
uchar* buff = (uchar*)buf;
if( ind<0 ) return CV_BADFACTOR_ERR;
if( buf==NULL || userData==NULL ) return CV_NULLPTR_ERR;
for( i=0; i<data->size1.height; i++, start+=data->step1 )
for( j=0; j<data->size1.width; j++, k++ )
start[j] = buff[k];
return CV_NO_ERR;
}
/*----------------------*/
int write_callback_32f( int ind, void* buf, void* userData)
{
int i, j, k = 0;
UserData* data = (UserData*)userData;
float* start = ((float**)(data->addr2))[ind];
float* buff = (float*)buf;
if( ind<0 ) return CV_BADFACTOR_ERR;
if( buf==NULL || userData==NULL ) return CV_NULLPTR_ERR;
for( i=0; i<data->size2.height; i++, start+=data->step2/4 )
for( j=0; j<data->size2.width; j++, k++ )
start[j] = buff[k];
return CV_NO_ERR;
}
/*##########################################=-- Test body --=###########################*/
static int fmaEigenObjects( void )
{
int n, n4, i, j, ie, m1, rep = 0, roi, roi4, bufSize;
int roix=0, roiy=0, sizex, sizey, step, step4, step44;
int err0, err1, err2, err3, err4, err5, err6, err7, err=0;
uchar *pro, *pro0, *object;
uchar** objs;
float *covMatr, *covMatr0, *avg, *avg0, *eigVal, *eigVal0, *coeffs, *coeffs0,
covMatrMax, coeffm, singleCoeff0;
float **eigObjs, **eigObjs0;
IplImage **Objs, **EigObjs, **EigObjs0, *Pro, *Pro0, *Object, *Avg, *Avg0;
double eps0, amax=0, singleCoeff, p;
AtsRandState state;
CvSize size;
int r;
CvTermCriteria limit;
UserData userData;
int (*read_callback)( int ind, void* buf, void* userData)=
read_callback_8u;
int (*read2_callback)( int ind, void* buf, void* userData)=
read_callback_32f;
int (*write_callback)( int ind, void* buf, void* userData)=
write_callback_32f;
CvInput* u_r = (CvInput*)&read_callback;
CvInput* u_r2= (CvInput*)&read2_callback;
CvInput* u_w = (CvInput*)&write_callback;
void* read_ = (u_r)->data;
void* read_2 = (u_r2)->data;
void* write_ = (u_w)->data;
/* Reading test parameters */
trsiRead( &obj_width, "100", "width of objects" );
trsiRead( &obj_height, "100", "height of objects" );
trsiRead( &obj_number, "11", "number of objects" );
trsdRead( &rel_bufSize, "0.09", "relative i/o buffer size" );
if( rel_bufSize < 0.0 ) rel_bufSize = 0.0;
m1 = obj_number - 1;
eps0= 1.0e-27;
n = obj_width * obj_height;
sizex = obj_width, sizey = obj_height;
Objs = (IplImage**)cvAlloc(sizeof(IplImage*) * obj_number );
EigObjs = (IplImage**)cvAlloc(sizeof(IplImage*) * m1 );
EigObjs0 = (IplImage**)cvAlloc(sizeof(IplImage*) * m1 );
objs = (uchar**)cvAlloc(sizeof(uchar*) * obj_number );
eigObjs = (float**)cvAlloc(sizeof(float*) * m1 );
eigObjs0 = (float**)cvAlloc(sizeof(float*) * m1 );
covMatr = (float*) cvAlloc(sizeof(float) * obj_number * obj_number );
covMatr0 = (float*) cvAlloc(sizeof(float) * obj_number * obj_number );
coeffs = (float*) cvAlloc(sizeof(float*) * m1 );
coeffs0 = (float*) cvAlloc(sizeof(float*) * m1 );
eigVal = (float*) cvAlloc(sizeof(float) * obj_number );
eigVal0 = (float*) cvAlloc(sizeof(float) * obj_number );
size.width = obj_width; size.height = obj_height;
atsRandInit( &state, 0, 255, 13 );
Avg = cvCreateImage( size, IPL_DEPTH_32F, 1 );
cvSetImageROI( Avg, cvRect(0, 0, Avg->width, Avg->height) );
Avg0 = cvCreateImage( size, IPL_DEPTH_32F, 1 );
cvSetImageROI( Avg0, cvRect(0, 0, Avg0->width, Avg0->height) );
avg = (float*)Avg->imageData;
avg0 = (float*)Avg0->imageData;
Pro = cvCreateImage( size, IPL_DEPTH_8U, 1 );
cvSetImageROI( Pro, cvRect(0, 0, Pro->width, Pro->height) );
Pro0 = cvCreateImage( size, IPL_DEPTH_8U, 1 );
cvSetImageROI( Pro0, cvRect(0, 0, Pro0->width, Pro0->height) );
pro = (uchar*)Pro->imageData;
pro0 = (uchar*)Pro0->imageData;
Object = cvCreateImage( size, IPL_DEPTH_8U, 1 );
cvSetImageROI( Object, cvRect(0, 0, Object->width, Object->height) );
object = (uchar*)Object->imageData;
step = Pro->widthStep; step4 = Avg->widthStep; step44 = step4/4;
n = step*obj_height; n4= step44*obj_height;
atsbRand8u ( &state, object, n );
for( i=0; i<obj_number; i++ )
{
Objs[i] = cvCreateImage( size, IPL_DEPTH_8U, 1 );
cvSetImageROI( Objs[i], cvRect(0, 0, Objs[i]->width, Objs[i]->height) );
objs[i] = (uchar*)Objs[i]->imageData;
atsbRand8u ( &state, objs[i], n );
if( i < m1 )
{
EigObjs[i] = cvCreateImage( size, IPL_DEPTH_32F, 1 );
cvSetImageROI( EigObjs[i], cvRect(0, 0, EigObjs[i]->width, EigObjs[i]->height) );
EigObjs0[i] = cvCreateImage( size, IPL_DEPTH_32F, 1 );
cvSetImageROI( EigObjs0[i], cvRect(0, 0, EigObjs0[i]->width, EigObjs0[i]->height) );
}
}
limit.type = CV_TERMCRIT_ITER; limit.max_iter = m1; limit.epsilon = 1;//(float)eps0;
bufSize = (int)(4*n*obj_number*rel_bufSize);
trsWrite(TW_RUN|TW_CON, "\n i/o buffer size : %10d bytes\n", bufSize );
trsWrite(TW_RUN|TW_CON, "\n ROI unsupported\n" );
/* User data fill */
userData.addr1 = (void*)objs;
userData.addr2 = (void*)eigObjs;
userData.step1 = step;
userData.step2 = step4;
repeat:
roi = roiy*step + roix;
roi4 = roiy*step44 + roix;
Avg->roi->xOffset = roix; Avg->roi->yOffset = roiy;
Avg->roi->height = size.height; Avg->roi->width = size.width;
Avg0->roi->xOffset = roix; Avg0->roi->yOffset = roiy;
Avg0->roi->height = size.height; Avg0->roi->width = size.width;
Pro->roi->xOffset = roix; Pro->roi->yOffset = roiy;
Pro->roi->height = size.height; Pro->roi->width = size.width;
Pro0->roi->xOffset = roix; Pro0->roi->yOffset = roiy;
Pro0->roi->height = size.height; Pro0->roi->width = size.width;
Object->roi->xOffset = roix; Object->roi->yOffset = roiy;
Object->roi->height = size.height; Object->roi->width = size.width;
for( i=0; i<obj_number; i++ )
{
Objs[i]->roi->xOffset = roix; Objs[i]->roi->yOffset = roiy;
Objs[i]->roi->height = size.height; Objs[i]->roi->width = size.width;
objs[i] = (uchar*)Objs[i]->imageData + roi;
if( i < m1 )
{
EigObjs[i]->roi->xOffset = roix; EigObjs[i]->roi->yOffset = roiy;
EigObjs[i]->roi->height = size.height; EigObjs[i]->roi->width = size.width;
EigObjs0[i]->roi->xOffset = roix; EigObjs0[i]->roi->yOffset = roiy;
EigObjs0[i]->roi->height = size.height; EigObjs0[i]->roi->width = size.width;
eigObjs[i] = (float*)EigObjs[i]->imageData + roi4;
eigObjs0[i] = (float*)EigObjs0[i]->imageData + roi4;
}
}
userData.size1 = userData.size2 = size;
/* =================================== Test functions run ============================= */
r = _cvCalcEigenObjects_8u32fR_q( obj_number, objs, step, eigObjs0, step4,
size, eigVal0, avg0+roi4, step4, &m1, &eps0 );
r = _cvEigenDecomposite_8u32fR_q( object+roi, step, m1, eigObjs0, step4,
avg0+roi4, step4, size, coeffs0 );
r = _cvEigenProjection_8u32fR_q( m1, eigObjs0, step4, coeffs0, avg0+roi4, step4,
pro0+roi, step, size );
r = _cvCalcCovarMatrix_8u32fR_q( obj_number, objs, step, avg0+roi4, step4,
size, covMatr0 );
singleCoeff0 = _cvCalcDecompCoeff_8u32fR_q( object+roi, step, eigObjs0[0], step4,
avg0+roi4, step4, size );
covMatrMax = 0.f;
for( i=0; i<obj_number*obj_number; i++ )
if( covMatrMax < (float)fabs( covMatr[i] ) )
covMatrMax = (float)fabs( covMatr[i] );
amax = 0;
for( ie=0; ie<m1; ie++ )
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*obj_width + j;
float e = eigObjs0[ie][ij];
if( amax < fabs(e) ) amax = fabs(e);
}
coeffm = 0.f;
for( i=0; i<m1; i++ )
if( coeffm < (float)fabs(coeffs0[i]) ) coeffm = (float)fabs(coeffs0[i]);
/*- - - - - - - - - - - - - - - - - - - - - without callbacks - - - - - - - - - - - - - */
for( i=0; i<obj_number*obj_number; i++ ) covMatr[i] = covMatr0[i];
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ ) pro[i*step + j] = pro0[i*step + j];
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ ) avg[i*step44 + j] = avg0[i*step44 + j];
for( i=0; i<m1; i++ ) { coeffs[i] = coeffs0[i]; eigVal[i] = eigVal0[i]; }
for( ie=0; ie<m1; ie++ )
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
eigObjs[ie][i*step44+j] = eigObjs0[ie][i*step44+j];
err1 = err2 = err3 = err4 = err5 = err6 = err7 = 0;
cvCalcCovarMatrixEx( obj_number,
(void*)Objs,
CV_EIGOBJ_NO_CALLBACK,
bufSize,
NULL,
(void*)&userData,
Avg,
covMatr );
cvCalcEigenObjects ( obj_number,
(void*)Objs,
(void*)EigObjs,
CV_EIGOBJ_NO_CALLBACK,
bufSize,
(void*)&userData,
&limit,
Avg,
eigVal );
singleCoeff = cvCalcDecompCoeff( Object, EigObjs[0], Avg );
if( fabs( (singleCoeff - singleCoeff0)/singleCoeff0 ) > RELDIFF ) err7++;
cvEigenDecomposite( Object,
m1,
(void*)EigObjs,
CV_EIGOBJ_NO_CALLBACK,
(void*)&userData,
Avg,
coeffs );
cvEigenProjection ( (void*)EigObjs,
m1,
CV_EIGOBJ_NO_CALLBACK,
(void*)&userData,
coeffs,
Avg,
Pro );
/* Covariance matrix comparision */
for( i=0; i<obj_number*obj_number; i++ )
if( fabs(covMatr[i] - covMatr0[i]) > RELDIFF*fabs(covMatrMax) ) err6++;
/* Averaged object comparision */
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step44 + j;
if( fabs( (avg+roi)[ij] - (avg0+roi)[ij] ) > MAXDIFF ) err1++;
}
/* Eigen objects comparision */
for( ie=0; ie<m1; ie++ )
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step44 + j;
float e0 = (eigObjs0[ie])[ij], e = (eigObjs[ie])[ij];
if( fabs( (e-e0)/amax ) > RELDIFF ) err2++;
}
/* Eigen values comparision */
for( i=0; i<m1; i++ )
{
double e0 = eigVal0[i], e = eigVal[i];
if(e0)
if( fabs( (e-e0)/e0 ) > RELDIFF ) err3++;
}
/* Decomposition coefficients comparision */
for( i=0; i<m1; i++ )
if(coeffs0[i])
if( fabs( (coeffs[i] - coeffs0[i])/coeffm ) > RELDIFF ) err4++;
/* Projection comparision */
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step + j;
if( fabs( (double)((pro+roi)[ij] - (pro0+roi)[ij]) ) > MAXDIFF ) err5++;
}
err0 = 0;
p = 100.f*err6/(float)(obj_number*obj_number);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Covar. matrix - %d errors (%7.3f %% );\n", err6, p );
err0 += err6;
}
p = 100.f*err1/(float)(size.height*size.width);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Averaged obj. - %d errors (%7.3f %% );\n", err1, p );
err0 += err1;
}
p = 100.f*err3/(float)(m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Eigen values - %d errors (%7.3f %% );\n", err3, p );
err0 += err3;
}
p = 100.f*err2/(float)(size.height*size.width*m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Eigen objects - %d errors (%7.3f %% );\n", err2, p );
err0 += err2;
}
p = 100.f*err4/(float)(m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Decomp.coeffs - %d errors (%7.3f %% );\n", err4, p );
err0 += err4;
}
if( ((float)err7)/m1 > 0.1 )
{
trsWrite(TW_RUN|TW_CON, " Single dec.c. - %d errors ;\n", err7);
err0 += err7;
}
p = 100.f*err5/(float)(size.height*size.width);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Projection - %d errors (%7.3f %% );\n", err5, p );
err0 += err5;
}
trsWrite(TW_RUN|TW_CON, " without callbacks : %8d errors;\n", err0 );
err += err0;
/*- - - - - - - - - - - - - - - - - - - - - input callback - - - - - - - - - - - - - */
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ ) pro[i*step + j] = pro0[i*step + j];
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ ) avg[i*step44 + j] = avg0[i*step44 + j];
for( i=0; i<m1; i++ ) { coeffs[i] = coeffs0[i]; eigVal[i] = eigVal0[i]; }
for( ie=0; ie<m1; ie++ )
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
eigObjs[ie][i*step44+j] = eigObjs0[ie][i*step44+j];
err1 = err2 = err3 = err4 = err5 = err6 = err7 = 0;
cvCalcEigenObjects ( obj_number,
read_,
(void*)EigObjs,
CV_EIGOBJ_INPUT_CALLBACK,
bufSize,
(void*)&userData,
&limit,
Avg,
eigVal );
cvEigenDecomposite( Object,
m1,
read_2,
CV_EIGOBJ_INPUT_CALLBACK,
(void*)&userData,
Avg,
coeffs );
cvEigenProjection ( read_2,
m1,
CV_EIGOBJ_INPUT_CALLBACK,
(void*)&userData,
coeffs,
Avg,
Pro );
/* Averaged object comparision */
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step44 + j;
if( fabs( (avg+roi)[ij] - (avg0+roi)[ij] ) > MAXDIFF ) err1++;
}
/* Eigen objects comparision */
for( ie=0; ie<m1; ie++ )
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step44 + j;
float e0 = (eigObjs0[ie])[ij], e = (eigObjs[ie])[ij];
if( fabs( (e-e0)/amax ) > RELDIFF ) err2++;
}
/* Eigen values comparision */
for( i=0; i<m1; i++ )
{
double e0 = eigVal0[i], e = eigVal[i];
if(e0)
if( fabs( (e-e0)/e0 ) > RELDIFF ) err3++;
}
/* Projection comparision */
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step + j;
if( fabs( (double)((pro+roi)[ij] - (pro0+roi)[ij]) ) > MAXDIFF ) err5++;
}
/* Decomposition coefficients comparision */
for( i=0; i<m1; i++ )
if(coeffs0[i])
if( fabs( (coeffs[i] - coeffs0[i])/coeffm ) > RELDIFF ) err4++;
err0 = 0;
p = 100.f*err1/(float)(size.height*size.width);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Averaged obj. - %d errors (%7.3f %% );\n", err1, p );
err0 += err1;
}
p = 100.f*err3/(float)(m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Eigen values - %d errors (%7.3f %% );\n", err3, p );
err0 += err3;
}
p = 100.f*err2/(float)(size.height*size.width*m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Eigen objects - %d errors (%7.3f %% );\n", err2, p );
err0 += err2;
}
p = 100.f*err4/(float)(m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Decomp.coeffs - %d errors (%7.3f %% );\n", err4, p );
err0 += err4;
}
p = 100.f*err5/(float)(size.height*size.width);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Projection - %d errors (%7.3f %% );\n", err5, p );
err0 += err5;
}
trsWrite(TW_RUN|TW_CON, " input callback : %8d errors;\n", err0 );
err += err0;
/*- - - - - - - - - - - - - - - - - - - - - output callback - - - - - - - - - - - - - */
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ ) avg[i*step44 + j] = avg0[i*step44 + j];
for( i=0; i<m1; i++ ) eigVal[i] = eigVal0[i];
for( ie=0; ie<m1; ie++ )
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
eigObjs[ie][i*step44+j] = eigObjs0[ie][i*step44+j];
err1 = err2 = err3 = err4 = err5 = 0;
cvCalcEigenObjects ( obj_number,
(void*)Objs,
write_,
CV_EIGOBJ_OUTPUT_CALLBACK,
bufSize,
(void*)&userData,
&limit,
Avg,
eigVal );
/* Averaged object comparision */
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step44 + j;
if( fabs( (avg+roi)[ij] - (avg0+roi)[ij] ) > MAXDIFF ) err1++;
}
/* Eigen objects comparision */
for( ie=0; ie<m1; ie++ )
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step44 + j;
float e0 = (eigObjs0[ie])[ij], e = (eigObjs[ie])[ij];
if( fabs( (e-e0)/amax ) > RELDIFF ) err2++;
}
/* Eigen values comparision */
for( i=0; i<m1; i++ )
{
double e0 = eigVal0[i], e = eigVal[i];
if(e0)
if( fabs( (e-e0)/e0 ) > RELDIFF ) err3++;
}
err0 = 0;
p = 100.f*err1/(float)(size.height*size.width);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Averaged obj. - %d errors (%7.3f %% );\n", err1, p );
err0 += err1;
}
p = 100.f*err3/(float)(m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Eigen values - %d errors (%7.3f %% );\n", err3, p );
err0 += err3;
}
p = 100.f*err2/(float)(size.height*size.width*m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Eigen objects - %d errors (%7.3f %% );\n", err2, p );
err0 += err2;
}
trsWrite(TW_RUN|TW_CON, " output callback : %8d errors;\n", err0 );
err += err0;
/*- - - - - - - - - - - - - - - - - - - - - both callbacks - - - - - - - - - - - - - */
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ ) avg[i*step44 + j] = avg0[i*step44 + j];
for( i=0; i<m1; i++ ) eigVal[i] = eigVal0[i];
for( ie=0; ie<m1; ie++ )
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
eigObjs[ie][i*step44+j] = eigObjs0[ie][i*step44+j];
err1 = err2 = err3 = err4 = err5 = 0;
cvCalcEigenObjects ( obj_number,
read_,
write_,
CV_EIGOBJ_INPUT_CALLBACK | CV_EIGOBJ_OUTPUT_CALLBACK,
bufSize,
(void*)&userData,
&limit,
Avg,
eigVal );
/* Averaged object comparision */
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step44 + j;
if( fabs( (avg+roi)[ij] - (avg0+roi)[ij] ) > MAXDIFF ) err1++;
}
/* Eigen objects comparision */
for( ie=0; ie<m1; ie++ )
for( i=0; i<size.height; i++ )
for( j=0; j<size.width; j++ )
{
int ij = i*step44 + j;
float e0 = (eigObjs0[ie])[ij], e = (eigObjs[ie])[ij];
if( fabs( (e-e0)/amax ) > RELDIFF ) err2++;
}
/* Eigen values comparision */
for( i=0; i<m1; i++ )
{
double e0 = eigVal0[i], e = eigVal[i];
if(e0)
if( fabs( (e-e0)/e0 ) > RELDIFF ) err3++;
}
err0 = 0;
p = 100.f*err1/(float)(size.height*size.width);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Averaged obj. - %d errors (%7.3f %% );\n", err1, p );
err0 += err1;
}
p = 100.f*err3/(float)(m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Eigen values - %d errors (%7.3f %% );\n", err3, p );
err0 += err3;
}
p = 100.f*err2/(float)(size.height*size.width*m1);
if( p>0.1 )
{
trsWrite(TW_RUN|TW_CON, " Eigen objects - %d errors (%7.3f %% );\n", err2, p );
err0 += err2;
}
trsWrite(TW_RUN|TW_CON, " both callbacks : %8d errors;\n", err0 );
err += err0;
/*================================-- test with ROI --===================================*/
if(!rep)
{
roix = (int)(0.157f*obj_width);
roiy = (int)(0.131f*obj_height);
sizex = (int)(0.611f*obj_width);
sizey = (int)(0.737f*obj_height);
roi = roiy*obj_width + roix;
trsWrite(TW_RUN|TW_CON, "\n ROI supported\n" );
rep++;
size.width = sizex; size.height = sizey;
goto repeat;
}
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ free memory ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/
cvReleaseImage( &Avg );
cvReleaseImage( &Avg0 );
cvReleaseImage( &Pro );
cvReleaseImage( &Pro0 );
cvReleaseImage( &Object );
for( i=0; i<obj_number; i++ )
{
cvReleaseImage( &Objs[i] );
if( i < m1 )
{
cvReleaseImage( &EigObjs[i] );
cvReleaseImage( &EigObjs0[i] );
}
}
cvFree( &objs );
cvFree( &eigObjs );
cvFree( &eigObjs0 );
cvFree( &coeffs );
cvFree( &coeffs0 );
cvFree( &eigVal );
cvFree( &eigVal0 );
cvFree( &Objs );
cvFree( &EigObjs );
cvFree( &EigObjs0 );
cvFree( &covMatr );
cvFree( &covMatr0 );
trsWrite(TW_RUN|TW_CON, "\n Errors number: %d\n", err );
if(err) return trsResult( TRS_FAIL, "Algorithm test has passed. %d errors.", err );
else return trsResult( TRS_OK, "Algorithm test has passed successfully" );
} /*fma*/
/*------------------------------------------- Initialize function ------------------------ */
void InitAEigenObjects( void )
{
/* Registering test function */
trsReg( FuncName, TestName, TestClass, fmaEigenObjects );
} /* InitAEigenObjects */
#endif
/* End of file */