772 lines
27 KiB
C++
772 lines
27 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "cvtest.h"
|
||
|
|
||
|
#if 0
|
||
|
|
||
|
#include "aeigenobjects.inc"
|
||
|
|
||
|
#define __8U 8
|
||
|
#define __32F 32
|
||
|
#define MAXDIFF 1.01
|
||
|
#define RELDIFF 1.0e-4
|
||
|
|
||
|
typedef struct _UserData /* User data structure for callback mode */
|
||
|
{
|
||
|
void* addr1; /* Array of objects ROI start addresses */
|
||
|
void* addr2;
|
||
|
int step1; /* Step in bytes */
|
||
|
int step2;
|
||
|
CvSize size1; /* ROI or full size */
|
||
|
CvSize size2;
|
||
|
} UserData;
|
||
|
|
||
|
/* Testing parameters */
|
||
|
static char FuncName[] =
|
||
|
"cvCalcCovarMatrixEx, cvCalcEigenObjects, cvCalcDecompCoeff, cvEigenDecomposite, cvEigenProjection";
|
||
|
static char TestName[] = "Eigen objects functions group test";
|
||
|
static char TestClass[] = "Algorithm";
|
||
|
static int obj_number, obj_width, obj_height;
|
||
|
static double rel_bufSize;
|
||
|
|
||
|
/*-----------------------------=--=-=== Callback functions ===-=--=---------------------*/
|
||
|
|
||
|
int read_callback_8u( int ind, void* buf, void* userData)
|
||
|
{
|
||
|
int i, j, k = 0;
|
||
|
UserData* data = (UserData*)userData;
|
||
|
uchar* start = ((uchar**)(data->addr1))[ind];
|
||
|
uchar* buff = (uchar*)buf;
|
||
|
|
||
|
if( ind<0 ) return CV_BADFACTOR_ERR;
|
||
|
if( buf==NULL || userData==NULL ) return CV_NULLPTR_ERR;
|
||
|
|
||
|
for( i=0; i<data->size1.height; i++, start+=data->step1 )
|
||
|
for( j=0; j<data->size1.width; j++, k++ )
|
||
|
buff[k] = start[j];
|
||
|
return CV_NO_ERR;
|
||
|
}
|
||
|
/*----------------------*/
|
||
|
int read_callback_32f( int ind, void* buf, void* userData)
|
||
|
{
|
||
|
int i, j, k = 0;
|
||
|
UserData* data = (UserData*)userData;
|
||
|
float* start = ((float**)(data->addr2))[ind];
|
||
|
float* buff = (float*)buf;
|
||
|
|
||
|
if( ind<0 ) return CV_BADFACTOR_ERR;
|
||
|
if( buf==NULL || userData==NULL ) return CV_NULLPTR_ERR;
|
||
|
|
||
|
for( i=0; i<data->size2.height; i++, start+=data->step2/4 )
|
||
|
for( j=0; j<data->size2.width; j++, k++ )
|
||
|
buff[k] = start[j];
|
||
|
return CV_NO_ERR;
|
||
|
}
|
||
|
/*========================*/
|
||
|
int write_callback_8u( int ind, void* buf, void* userData)
|
||
|
{
|
||
|
int i, j, k = 0;
|
||
|
UserData* data = (UserData*)userData;
|
||
|
uchar* start = ((uchar**)(data->addr1))[ind];
|
||
|
uchar* buff = (uchar*)buf;
|
||
|
|
||
|
if( ind<0 ) return CV_BADFACTOR_ERR;
|
||
|
if( buf==NULL || userData==NULL ) return CV_NULLPTR_ERR;
|
||
|
|
||
|
for( i=0; i<data->size1.height; i++, start+=data->step1 )
|
||
|
for( j=0; j<data->size1.width; j++, k++ )
|
||
|
start[j] = buff[k];
|
||
|
return CV_NO_ERR;
|
||
|
}
|
||
|
/*----------------------*/
|
||
|
int write_callback_32f( int ind, void* buf, void* userData)
|
||
|
{
|
||
|
int i, j, k = 0;
|
||
|
UserData* data = (UserData*)userData;
|
||
|
float* start = ((float**)(data->addr2))[ind];
|
||
|
float* buff = (float*)buf;
|
||
|
|
||
|
if( ind<0 ) return CV_BADFACTOR_ERR;
|
||
|
if( buf==NULL || userData==NULL ) return CV_NULLPTR_ERR;
|
||
|
|
||
|
for( i=0; i<data->size2.height; i++, start+=data->step2/4 )
|
||
|
for( j=0; j<data->size2.width; j++, k++ )
|
||
|
start[j] = buff[k];
|
||
|
return CV_NO_ERR;
|
||
|
}
|
||
|
|
||
|
/*##########################################=-- Test body --=###########################*/
|
||
|
static int fmaEigenObjects( void )
|
||
|
{
|
||
|
int n, n4, i, j, ie, m1, rep = 0, roi, roi4, bufSize;
|
||
|
int roix=0, roiy=0, sizex, sizey, step, step4, step44;
|
||
|
int err0, err1, err2, err3, err4, err5, err6, err7, err=0;
|
||
|
uchar *pro, *pro0, *object;
|
||
|
uchar** objs;
|
||
|
float *covMatr, *covMatr0, *avg, *avg0, *eigVal, *eigVal0, *coeffs, *coeffs0,
|
||
|
covMatrMax, coeffm, singleCoeff0;
|
||
|
float **eigObjs, **eigObjs0;
|
||
|
IplImage **Objs, **EigObjs, **EigObjs0, *Pro, *Pro0, *Object, *Avg, *Avg0;
|
||
|
double eps0, amax=0, singleCoeff, p;
|
||
|
AtsRandState state;
|
||
|
CvSize size;
|
||
|
int r;
|
||
|
CvTermCriteria limit;
|
||
|
UserData userData;
|
||
|
int (*read_callback)( int ind, void* buf, void* userData)=
|
||
|
read_callback_8u;
|
||
|
int (*read2_callback)( int ind, void* buf, void* userData)=
|
||
|
read_callback_32f;
|
||
|
int (*write_callback)( int ind, void* buf, void* userData)=
|
||
|
write_callback_32f;
|
||
|
CvInput* u_r = (CvInput*)&read_callback;
|
||
|
CvInput* u_r2= (CvInput*)&read2_callback;
|
||
|
CvInput* u_w = (CvInput*)&write_callback;
|
||
|
void* read_ = (u_r)->data;
|
||
|
void* read_2 = (u_r2)->data;
|
||
|
void* write_ = (u_w)->data;
|
||
|
|
||
|
/* Reading test parameters */
|
||
|
trsiRead( &obj_width, "100", "width of objects" );
|
||
|
trsiRead( &obj_height, "100", "height of objects" );
|
||
|
trsiRead( &obj_number, "11", "number of objects" );
|
||
|
trsdRead( &rel_bufSize, "0.09", "relative i/o buffer size" );
|
||
|
|
||
|
if( rel_bufSize < 0.0 ) rel_bufSize = 0.0;
|
||
|
m1 = obj_number - 1;
|
||
|
eps0= 1.0e-27;
|
||
|
n = obj_width * obj_height;
|
||
|
sizex = obj_width, sizey = obj_height;
|
||
|
|
||
|
Objs = (IplImage**)cvAlloc(sizeof(IplImage*) * obj_number );
|
||
|
EigObjs = (IplImage**)cvAlloc(sizeof(IplImage*) * m1 );
|
||
|
EigObjs0 = (IplImage**)cvAlloc(sizeof(IplImage*) * m1 );
|
||
|
|
||
|
objs = (uchar**)cvAlloc(sizeof(uchar*) * obj_number );
|
||
|
eigObjs = (float**)cvAlloc(sizeof(float*) * m1 );
|
||
|
eigObjs0 = (float**)cvAlloc(sizeof(float*) * m1 );
|
||
|
covMatr = (float*) cvAlloc(sizeof(float) * obj_number * obj_number );
|
||
|
covMatr0 = (float*) cvAlloc(sizeof(float) * obj_number * obj_number );
|
||
|
coeffs = (float*) cvAlloc(sizeof(float*) * m1 );
|
||
|
coeffs0 = (float*) cvAlloc(sizeof(float*) * m1 );
|
||
|
eigVal = (float*) cvAlloc(sizeof(float) * obj_number );
|
||
|
eigVal0 = (float*) cvAlloc(sizeof(float) * obj_number );
|
||
|
|
||
|
size.width = obj_width; size.height = obj_height;
|
||
|
atsRandInit( &state, 0, 255, 13 );
|
||
|
|
||
|
Avg = cvCreateImage( size, IPL_DEPTH_32F, 1 );
|
||
|
cvSetImageROI( Avg, cvRect(0, 0, Avg->width, Avg->height) );
|
||
|
Avg0 = cvCreateImage( size, IPL_DEPTH_32F, 1 );
|
||
|
cvSetImageROI( Avg0, cvRect(0, 0, Avg0->width, Avg0->height) );
|
||
|
avg = (float*)Avg->imageData;
|
||
|
avg0 = (float*)Avg0->imageData;
|
||
|
Pro = cvCreateImage( size, IPL_DEPTH_8U, 1 );
|
||
|
cvSetImageROI( Pro, cvRect(0, 0, Pro->width, Pro->height) );
|
||
|
Pro0 = cvCreateImage( size, IPL_DEPTH_8U, 1 );
|
||
|
cvSetImageROI( Pro0, cvRect(0, 0, Pro0->width, Pro0->height) );
|
||
|
pro = (uchar*)Pro->imageData;
|
||
|
pro0 = (uchar*)Pro0->imageData;
|
||
|
Object = cvCreateImage( size, IPL_DEPTH_8U, 1 );
|
||
|
cvSetImageROI( Object, cvRect(0, 0, Object->width, Object->height) );
|
||
|
object = (uchar*)Object->imageData;
|
||
|
|
||
|
step = Pro->widthStep; step4 = Avg->widthStep; step44 = step4/4;
|
||
|
n = step*obj_height; n4= step44*obj_height;
|
||
|
atsbRand8u ( &state, object, n );
|
||
|
|
||
|
for( i=0; i<obj_number; i++ )
|
||
|
{
|
||
|
Objs[i] = cvCreateImage( size, IPL_DEPTH_8U, 1 );
|
||
|
cvSetImageROI( Objs[i], cvRect(0, 0, Objs[i]->width, Objs[i]->height) );
|
||
|
objs[i] = (uchar*)Objs[i]->imageData;
|
||
|
atsbRand8u ( &state, objs[i], n );
|
||
|
if( i < m1 )
|
||
|
{
|
||
|
EigObjs[i] = cvCreateImage( size, IPL_DEPTH_32F, 1 );
|
||
|
cvSetImageROI( EigObjs[i], cvRect(0, 0, EigObjs[i]->width, EigObjs[i]->height) );
|
||
|
EigObjs0[i] = cvCreateImage( size, IPL_DEPTH_32F, 1 );
|
||
|
cvSetImageROI( EigObjs0[i], cvRect(0, 0, EigObjs0[i]->width, EigObjs0[i]->height) );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
limit.type = CV_TERMCRIT_ITER; limit.max_iter = m1; limit.epsilon = 1;//(float)eps0;
|
||
|
|
||
|
bufSize = (int)(4*n*obj_number*rel_bufSize);
|
||
|
trsWrite(TW_RUN|TW_CON, "\n i/o buffer size : %10d bytes\n", bufSize );
|
||
|
|
||
|
trsWrite(TW_RUN|TW_CON, "\n ROI unsupported\n" );
|
||
|
|
||
|
/* User data fill */
|
||
|
userData.addr1 = (void*)objs;
|
||
|
userData.addr2 = (void*)eigObjs;
|
||
|
userData.step1 = step;
|
||
|
userData.step2 = step4;
|
||
|
|
||
|
|
||
|
repeat:
|
||
|
roi = roiy*step + roix;
|
||
|
roi4 = roiy*step44 + roix;
|
||
|
|
||
|
Avg->roi->xOffset = roix; Avg->roi->yOffset = roiy;
|
||
|
Avg->roi->height = size.height; Avg->roi->width = size.width;
|
||
|
Avg0->roi->xOffset = roix; Avg0->roi->yOffset = roiy;
|
||
|
Avg0->roi->height = size.height; Avg0->roi->width = size.width;
|
||
|
Pro->roi->xOffset = roix; Pro->roi->yOffset = roiy;
|
||
|
Pro->roi->height = size.height; Pro->roi->width = size.width;
|
||
|
Pro0->roi->xOffset = roix; Pro0->roi->yOffset = roiy;
|
||
|
Pro0->roi->height = size.height; Pro0->roi->width = size.width;
|
||
|
Object->roi->xOffset = roix; Object->roi->yOffset = roiy;
|
||
|
Object->roi->height = size.height; Object->roi->width = size.width;
|
||
|
|
||
|
for( i=0; i<obj_number; i++ )
|
||
|
{
|
||
|
Objs[i]->roi->xOffset = roix; Objs[i]->roi->yOffset = roiy;
|
||
|
Objs[i]->roi->height = size.height; Objs[i]->roi->width = size.width;
|
||
|
objs[i] = (uchar*)Objs[i]->imageData + roi;
|
||
|
if( i < m1 )
|
||
|
{
|
||
|
EigObjs[i]->roi->xOffset = roix; EigObjs[i]->roi->yOffset = roiy;
|
||
|
EigObjs[i]->roi->height = size.height; EigObjs[i]->roi->width = size.width;
|
||
|
EigObjs0[i]->roi->xOffset = roix; EigObjs0[i]->roi->yOffset = roiy;
|
||
|
EigObjs0[i]->roi->height = size.height; EigObjs0[i]->roi->width = size.width;
|
||
|
eigObjs[i] = (float*)EigObjs[i]->imageData + roi4;
|
||
|
eigObjs0[i] = (float*)EigObjs0[i]->imageData + roi4;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
userData.size1 = userData.size2 = size;
|
||
|
|
||
|
/* =================================== Test functions run ============================= */
|
||
|
|
||
|
r = _cvCalcEigenObjects_8u32fR_q( obj_number, objs, step, eigObjs0, step4,
|
||
|
size, eigVal0, avg0+roi4, step4, &m1, &eps0 );
|
||
|
|
||
|
r = _cvEigenDecomposite_8u32fR_q( object+roi, step, m1, eigObjs0, step4,
|
||
|
avg0+roi4, step4, size, coeffs0 );
|
||
|
|
||
|
r = _cvEigenProjection_8u32fR_q( m1, eigObjs0, step4, coeffs0, avg0+roi4, step4,
|
||
|
pro0+roi, step, size );
|
||
|
|
||
|
r = _cvCalcCovarMatrix_8u32fR_q( obj_number, objs, step, avg0+roi4, step4,
|
||
|
size, covMatr0 );
|
||
|
|
||
|
singleCoeff0 = _cvCalcDecompCoeff_8u32fR_q( object+roi, step, eigObjs0[0], step4,
|
||
|
avg0+roi4, step4, size );
|
||
|
|
||
|
covMatrMax = 0.f;
|
||
|
for( i=0; i<obj_number*obj_number; i++ )
|
||
|
if( covMatrMax < (float)fabs( covMatr[i] ) )
|
||
|
covMatrMax = (float)fabs( covMatr[i] );
|
||
|
|
||
|
amax = 0;
|
||
|
for( ie=0; ie<m1; ie++ )
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*obj_width + j;
|
||
|
float e = eigObjs0[ie][ij];
|
||
|
if( amax < fabs(e) ) amax = fabs(e);
|
||
|
}
|
||
|
|
||
|
coeffm = 0.f;
|
||
|
for( i=0; i<m1; i++ )
|
||
|
if( coeffm < (float)fabs(coeffs0[i]) ) coeffm = (float)fabs(coeffs0[i]);
|
||
|
|
||
|
/*- - - - - - - - - - - - - - - - - - - - - without callbacks - - - - - - - - - - - - - */
|
||
|
for( i=0; i<obj_number*obj_number; i++ ) covMatr[i] = covMatr0[i];
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ ) pro[i*step + j] = pro0[i*step + j];
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ ) avg[i*step44 + j] = avg0[i*step44 + j];
|
||
|
for( i=0; i<m1; i++ ) { coeffs[i] = coeffs0[i]; eigVal[i] = eigVal0[i]; }
|
||
|
for( ie=0; ie<m1; ie++ )
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
eigObjs[ie][i*step44+j] = eigObjs0[ie][i*step44+j];
|
||
|
|
||
|
err1 = err2 = err3 = err4 = err5 = err6 = err7 = 0;
|
||
|
|
||
|
cvCalcCovarMatrixEx( obj_number,
|
||
|
(void*)Objs,
|
||
|
CV_EIGOBJ_NO_CALLBACK,
|
||
|
bufSize,
|
||
|
NULL,
|
||
|
(void*)&userData,
|
||
|
Avg,
|
||
|
covMatr );
|
||
|
|
||
|
cvCalcEigenObjects ( obj_number,
|
||
|
(void*)Objs,
|
||
|
(void*)EigObjs,
|
||
|
CV_EIGOBJ_NO_CALLBACK,
|
||
|
bufSize,
|
||
|
(void*)&userData,
|
||
|
&limit,
|
||
|
Avg,
|
||
|
eigVal );
|
||
|
|
||
|
singleCoeff = cvCalcDecompCoeff( Object, EigObjs[0], Avg );
|
||
|
if( fabs( (singleCoeff - singleCoeff0)/singleCoeff0 ) > RELDIFF ) err7++;
|
||
|
|
||
|
cvEigenDecomposite( Object,
|
||
|
m1,
|
||
|
(void*)EigObjs,
|
||
|
CV_EIGOBJ_NO_CALLBACK,
|
||
|
(void*)&userData,
|
||
|
Avg,
|
||
|
coeffs );
|
||
|
cvEigenProjection ( (void*)EigObjs,
|
||
|
m1,
|
||
|
CV_EIGOBJ_NO_CALLBACK,
|
||
|
(void*)&userData,
|
||
|
coeffs,
|
||
|
Avg,
|
||
|
Pro );
|
||
|
|
||
|
/* Covariance matrix comparision */
|
||
|
for( i=0; i<obj_number*obj_number; i++ )
|
||
|
if( fabs(covMatr[i] - covMatr0[i]) > RELDIFF*fabs(covMatrMax) ) err6++;
|
||
|
|
||
|
/* Averaged object comparision */
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step44 + j;
|
||
|
if( fabs( (avg+roi)[ij] - (avg0+roi)[ij] ) > MAXDIFF ) err1++;
|
||
|
}
|
||
|
|
||
|
/* Eigen objects comparision */
|
||
|
for( ie=0; ie<m1; ie++ )
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step44 + j;
|
||
|
float e0 = (eigObjs0[ie])[ij], e = (eigObjs[ie])[ij];
|
||
|
if( fabs( (e-e0)/amax ) > RELDIFF ) err2++;
|
||
|
}
|
||
|
|
||
|
/* Eigen values comparision */
|
||
|
for( i=0; i<m1; i++ )
|
||
|
{
|
||
|
double e0 = eigVal0[i], e = eigVal[i];
|
||
|
if(e0)
|
||
|
if( fabs( (e-e0)/e0 ) > RELDIFF ) err3++;
|
||
|
}
|
||
|
|
||
|
/* Decomposition coefficients comparision */
|
||
|
for( i=0; i<m1; i++ )
|
||
|
if(coeffs0[i])
|
||
|
if( fabs( (coeffs[i] - coeffs0[i])/coeffm ) > RELDIFF ) err4++;
|
||
|
|
||
|
/* Projection comparision */
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step + j;
|
||
|
if( fabs( (double)((pro+roi)[ij] - (pro0+roi)[ij]) ) > MAXDIFF ) err5++;
|
||
|
}
|
||
|
|
||
|
err0 = 0;
|
||
|
p = 100.f*err6/(float)(obj_number*obj_number);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Covar. matrix - %d errors (%7.3f %% );\n", err6, p );
|
||
|
err0 += err6;
|
||
|
}
|
||
|
p = 100.f*err1/(float)(size.height*size.width);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Averaged obj. - %d errors (%7.3f %% );\n", err1, p );
|
||
|
err0 += err1;
|
||
|
}
|
||
|
p = 100.f*err3/(float)(m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Eigen values - %d errors (%7.3f %% );\n", err3, p );
|
||
|
err0 += err3;
|
||
|
}
|
||
|
p = 100.f*err2/(float)(size.height*size.width*m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Eigen objects - %d errors (%7.3f %% );\n", err2, p );
|
||
|
err0 += err2;
|
||
|
}
|
||
|
p = 100.f*err4/(float)(m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Decomp.coeffs - %d errors (%7.3f %% );\n", err4, p );
|
||
|
err0 += err4;
|
||
|
}
|
||
|
if( ((float)err7)/m1 > 0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Single dec.c. - %d errors ;\n", err7);
|
||
|
err0 += err7;
|
||
|
}
|
||
|
p = 100.f*err5/(float)(size.height*size.width);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Projection - %d errors (%7.3f %% );\n", err5, p );
|
||
|
err0 += err5;
|
||
|
}
|
||
|
trsWrite(TW_RUN|TW_CON, " without callbacks : %8d errors;\n", err0 );
|
||
|
|
||
|
err += err0;
|
||
|
|
||
|
/*- - - - - - - - - - - - - - - - - - - - - input callback - - - - - - - - - - - - - */
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ ) pro[i*step + j] = pro0[i*step + j];
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ ) avg[i*step44 + j] = avg0[i*step44 + j];
|
||
|
for( i=0; i<m1; i++ ) { coeffs[i] = coeffs0[i]; eigVal[i] = eigVal0[i]; }
|
||
|
for( ie=0; ie<m1; ie++ )
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
eigObjs[ie][i*step44+j] = eigObjs0[ie][i*step44+j];
|
||
|
|
||
|
err1 = err2 = err3 = err4 = err5 = err6 = err7 = 0;
|
||
|
|
||
|
cvCalcEigenObjects ( obj_number,
|
||
|
read_,
|
||
|
(void*)EigObjs,
|
||
|
CV_EIGOBJ_INPUT_CALLBACK,
|
||
|
bufSize,
|
||
|
(void*)&userData,
|
||
|
&limit,
|
||
|
Avg,
|
||
|
eigVal );
|
||
|
|
||
|
cvEigenDecomposite( Object,
|
||
|
m1,
|
||
|
read_2,
|
||
|
CV_EIGOBJ_INPUT_CALLBACK,
|
||
|
(void*)&userData,
|
||
|
Avg,
|
||
|
coeffs );
|
||
|
|
||
|
cvEigenProjection ( read_2,
|
||
|
m1,
|
||
|
CV_EIGOBJ_INPUT_CALLBACK,
|
||
|
(void*)&userData,
|
||
|
coeffs,
|
||
|
Avg,
|
||
|
Pro );
|
||
|
|
||
|
/* Averaged object comparision */
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step44 + j;
|
||
|
if( fabs( (avg+roi)[ij] - (avg0+roi)[ij] ) > MAXDIFF ) err1++;
|
||
|
}
|
||
|
|
||
|
/* Eigen objects comparision */
|
||
|
for( ie=0; ie<m1; ie++ )
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step44 + j;
|
||
|
float e0 = (eigObjs0[ie])[ij], e = (eigObjs[ie])[ij];
|
||
|
if( fabs( (e-e0)/amax ) > RELDIFF ) err2++;
|
||
|
}
|
||
|
|
||
|
/* Eigen values comparision */
|
||
|
for( i=0; i<m1; i++ )
|
||
|
{
|
||
|
double e0 = eigVal0[i], e = eigVal[i];
|
||
|
if(e0)
|
||
|
if( fabs( (e-e0)/e0 ) > RELDIFF ) err3++;
|
||
|
}
|
||
|
|
||
|
/* Projection comparision */
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step + j;
|
||
|
if( fabs( (double)((pro+roi)[ij] - (pro0+roi)[ij]) ) > MAXDIFF ) err5++;
|
||
|
}
|
||
|
|
||
|
/* Decomposition coefficients comparision */
|
||
|
for( i=0; i<m1; i++ )
|
||
|
if(coeffs0[i])
|
||
|
if( fabs( (coeffs[i] - coeffs0[i])/coeffm ) > RELDIFF ) err4++;
|
||
|
|
||
|
err0 = 0;
|
||
|
p = 100.f*err1/(float)(size.height*size.width);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Averaged obj. - %d errors (%7.3f %% );\n", err1, p );
|
||
|
err0 += err1;
|
||
|
}
|
||
|
p = 100.f*err3/(float)(m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Eigen values - %d errors (%7.3f %% );\n", err3, p );
|
||
|
err0 += err3;
|
||
|
}
|
||
|
p = 100.f*err2/(float)(size.height*size.width*m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Eigen objects - %d errors (%7.3f %% );\n", err2, p );
|
||
|
err0 += err2;
|
||
|
}
|
||
|
p = 100.f*err4/(float)(m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Decomp.coeffs - %d errors (%7.3f %% );\n", err4, p );
|
||
|
err0 += err4;
|
||
|
}
|
||
|
p = 100.f*err5/(float)(size.height*size.width);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Projection - %d errors (%7.3f %% );\n", err5, p );
|
||
|
err0 += err5;
|
||
|
}
|
||
|
trsWrite(TW_RUN|TW_CON, " input callback : %8d errors;\n", err0 );
|
||
|
|
||
|
err += err0;
|
||
|
|
||
|
/*- - - - - - - - - - - - - - - - - - - - - output callback - - - - - - - - - - - - - */
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ ) avg[i*step44 + j] = avg0[i*step44 + j];
|
||
|
for( i=0; i<m1; i++ ) eigVal[i] = eigVal0[i];
|
||
|
for( ie=0; ie<m1; ie++ )
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
eigObjs[ie][i*step44+j] = eigObjs0[ie][i*step44+j];
|
||
|
|
||
|
err1 = err2 = err3 = err4 = err5 = 0;
|
||
|
|
||
|
cvCalcEigenObjects ( obj_number,
|
||
|
(void*)Objs,
|
||
|
write_,
|
||
|
CV_EIGOBJ_OUTPUT_CALLBACK,
|
||
|
bufSize,
|
||
|
(void*)&userData,
|
||
|
&limit,
|
||
|
Avg,
|
||
|
eigVal );
|
||
|
|
||
|
/* Averaged object comparision */
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step44 + j;
|
||
|
if( fabs( (avg+roi)[ij] - (avg0+roi)[ij] ) > MAXDIFF ) err1++;
|
||
|
}
|
||
|
|
||
|
/* Eigen objects comparision */
|
||
|
for( ie=0; ie<m1; ie++ )
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step44 + j;
|
||
|
float e0 = (eigObjs0[ie])[ij], e = (eigObjs[ie])[ij];
|
||
|
if( fabs( (e-e0)/amax ) > RELDIFF ) err2++;
|
||
|
}
|
||
|
|
||
|
/* Eigen values comparision */
|
||
|
for( i=0; i<m1; i++ )
|
||
|
{
|
||
|
double e0 = eigVal0[i], e = eigVal[i];
|
||
|
if(e0)
|
||
|
if( fabs( (e-e0)/e0 ) > RELDIFF ) err3++;
|
||
|
}
|
||
|
|
||
|
err0 = 0;
|
||
|
p = 100.f*err1/(float)(size.height*size.width);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Averaged obj. - %d errors (%7.3f %% );\n", err1, p );
|
||
|
err0 += err1;
|
||
|
}
|
||
|
p = 100.f*err3/(float)(m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Eigen values - %d errors (%7.3f %% );\n", err3, p );
|
||
|
err0 += err3;
|
||
|
}
|
||
|
p = 100.f*err2/(float)(size.height*size.width*m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Eigen objects - %d errors (%7.3f %% );\n", err2, p );
|
||
|
err0 += err2;
|
||
|
}
|
||
|
trsWrite(TW_RUN|TW_CON, " output callback : %8d errors;\n", err0 );
|
||
|
|
||
|
err += err0;
|
||
|
|
||
|
/*- - - - - - - - - - - - - - - - - - - - - both callbacks - - - - - - - - - - - - - */
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ ) avg[i*step44 + j] = avg0[i*step44 + j];
|
||
|
for( i=0; i<m1; i++ ) eigVal[i] = eigVal0[i];
|
||
|
for( ie=0; ie<m1; ie++ )
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
eigObjs[ie][i*step44+j] = eigObjs0[ie][i*step44+j];
|
||
|
|
||
|
err1 = err2 = err3 = err4 = err5 = 0;
|
||
|
|
||
|
cvCalcEigenObjects ( obj_number,
|
||
|
read_,
|
||
|
write_,
|
||
|
CV_EIGOBJ_INPUT_CALLBACK | CV_EIGOBJ_OUTPUT_CALLBACK,
|
||
|
bufSize,
|
||
|
(void*)&userData,
|
||
|
&limit,
|
||
|
Avg,
|
||
|
eigVal );
|
||
|
|
||
|
/* Averaged object comparision */
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step44 + j;
|
||
|
if( fabs( (avg+roi)[ij] - (avg0+roi)[ij] ) > MAXDIFF ) err1++;
|
||
|
}
|
||
|
|
||
|
/* Eigen objects comparision */
|
||
|
for( ie=0; ie<m1; ie++ )
|
||
|
for( i=0; i<size.height; i++ )
|
||
|
for( j=0; j<size.width; j++ )
|
||
|
{
|
||
|
int ij = i*step44 + j;
|
||
|
float e0 = (eigObjs0[ie])[ij], e = (eigObjs[ie])[ij];
|
||
|
if( fabs( (e-e0)/amax ) > RELDIFF ) err2++;
|
||
|
}
|
||
|
|
||
|
/* Eigen values comparision */
|
||
|
for( i=0; i<m1; i++ )
|
||
|
{
|
||
|
double e0 = eigVal0[i], e = eigVal[i];
|
||
|
if(e0)
|
||
|
if( fabs( (e-e0)/e0 ) > RELDIFF ) err3++;
|
||
|
}
|
||
|
|
||
|
err0 = 0;
|
||
|
p = 100.f*err1/(float)(size.height*size.width);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Averaged obj. - %d errors (%7.3f %% );\n", err1, p );
|
||
|
err0 += err1;
|
||
|
}
|
||
|
p = 100.f*err3/(float)(m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Eigen values - %d errors (%7.3f %% );\n", err3, p );
|
||
|
err0 += err3;
|
||
|
}
|
||
|
p = 100.f*err2/(float)(size.height*size.width*m1);
|
||
|
if( p>0.1 )
|
||
|
{
|
||
|
trsWrite(TW_RUN|TW_CON, " Eigen objects - %d errors (%7.3f %% );\n", err2, p );
|
||
|
err0 += err2;
|
||
|
}
|
||
|
trsWrite(TW_RUN|TW_CON, " both callbacks : %8d errors;\n", err0 );
|
||
|
|
||
|
err += err0;
|
||
|
|
||
|
|
||
|
/*================================-- test with ROI --===================================*/
|
||
|
|
||
|
if(!rep)
|
||
|
{
|
||
|
roix = (int)(0.157f*obj_width);
|
||
|
roiy = (int)(0.131f*obj_height);
|
||
|
sizex = (int)(0.611f*obj_width);
|
||
|
sizey = (int)(0.737f*obj_height);
|
||
|
roi = roiy*obj_width + roix;
|
||
|
|
||
|
trsWrite(TW_RUN|TW_CON, "\n ROI supported\n" );
|
||
|
rep++;
|
||
|
size.width = sizex; size.height = sizey;
|
||
|
|
||
|
goto repeat;
|
||
|
}
|
||
|
|
||
|
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ free memory ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/
|
||
|
cvReleaseImage( &Avg );
|
||
|
cvReleaseImage( &Avg0 );
|
||
|
cvReleaseImage( &Pro );
|
||
|
cvReleaseImage( &Pro0 );
|
||
|
cvReleaseImage( &Object );
|
||
|
for( i=0; i<obj_number; i++ )
|
||
|
{
|
||
|
cvReleaseImage( &Objs[i] );
|
||
|
if( i < m1 )
|
||
|
{
|
||
|
cvReleaseImage( &EigObjs[i] );
|
||
|
cvReleaseImage( &EigObjs0[i] );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cvFree( &objs );
|
||
|
cvFree( &eigObjs );
|
||
|
cvFree( &eigObjs0 );
|
||
|
cvFree( &coeffs );
|
||
|
cvFree( &coeffs0 );
|
||
|
cvFree( &eigVal );
|
||
|
cvFree( &eigVal0 );
|
||
|
cvFree( &Objs );
|
||
|
cvFree( &EigObjs );
|
||
|
cvFree( &EigObjs0 );
|
||
|
cvFree( &covMatr );
|
||
|
cvFree( &covMatr0 );
|
||
|
|
||
|
trsWrite(TW_RUN|TW_CON, "\n Errors number: %d\n", err );
|
||
|
|
||
|
if(err) return trsResult( TRS_FAIL, "Algorithm test has passed. %d errors.", err );
|
||
|
else return trsResult( TRS_OK, "Algorithm test has passed successfully" );
|
||
|
|
||
|
} /*fma*/
|
||
|
|
||
|
/*------------------------------------------- Initialize function ------------------------ */
|
||
|
void InitAEigenObjects( void )
|
||
|
{
|
||
|
/* Registering test function */
|
||
|
trsReg( FuncName, TestName, TestClass, fmaEigenObjects );
|
||
|
} /* InitAEigenObjects */
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/* End of file */
|