opencv/samples/python2/digits_video.py

95 lines
2.7 KiB
Python
Raw Normal View History

2013-03-06 07:41:02 +01:00
#!/usr/bin/env python
2012-10-17 01:18:30 +02:00
import numpy as np
import cv2
2013-03-06 07:41:02 +01:00
# built-in modules
2012-10-17 01:18:30 +02:00
import os
import sys
2013-03-06 07:41:02 +01:00
# local modules
2012-10-17 01:18:30 +02:00
import video
from common import mosaic
from digits import *
def main():
try:
2013-03-06 07:41:02 +01:00
src = sys.argv[1]
except:
2013-03-06 07:41:02 +01:00
src = 0
2012-10-17 01:18:30 +02:00
cap = video.create_capture(src)
classifier_fn = 'digits_svm.dat'
if not os.path.exists(classifier_fn):
print '"%s" not found, run digits.py first' % classifier_fn
return
model = SVM()
model.load(classifier_fn)
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10)
bin = cv2.medianBlur(bin, 3)
_, contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
2013-03-06 07:41:02 +01:00
try:
heirs = heirs[0]
except:
heirs = []
2012-10-17 01:18:30 +02:00
for cnt, heir in zip(contours, heirs):
_, _, _, outer_i = heir
if outer_i >= 0:
continue
x, y, w, h = cv2.boundingRect(cnt)
if not (16 <= h <= 64 and w <= 1.2*h):
continue
pad = max(h-w, 0)
x, w = x-pad/2, w+pad
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0))
bin_roi = bin[y:,x:][:h,:w]
gray_roi = gray[y:,x:][:h,:w]
m = bin_roi != 0
if not 0.1 < m.mean() < 0.4:
continue
'''
v_in, v_out = gray_roi[m], gray_roi[~m]
if v_out.std() > 10.0:
continue
s = "%f, %f" % (abs(v_in.mean() - v_out.mean()), v_out.std())
cv2.putText(frame, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
'''
s = 1.5*float(h)/SZ
m = cv2.moments(bin_roi)
c1 = np.float32([m['m10'], m['m01']]) / m['m00']
c0 = np.float32([SZ/2, SZ/2])
t = c1 - s*c0
A = np.zeros((2, 3), np.float32)
A[:,:2] = np.eye(2)*s
A[:,2] = t
bin_norm = cv2.warpAffine(bin_roi, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
bin_norm = deskew(bin_norm)
if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]:
frame[y:,x+w:][:SZ, :SZ] = bin_norm[...,np.newaxis]
sample = preprocess_hog([bin_norm])
digit = model.predict(sample)[0]
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
cv2.imshow('frame', frame)
cv2.imshow('bin', bin)
ch = cv2.waitKey(1)
if ch == 27:
break
if __name__ == '__main__':
main()