opencv/samples/cpp/kmeans.cpp

77 lines
2.2 KiB
C++
Raw Normal View History

2010-11-28 00:15:16 +01:00
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/core.hpp"
2010-12-04 09:29:21 +01:00
#include <iostream>
2010-11-28 00:15:16 +01:00
using namespace cv;
2010-12-04 09:29:21 +01:00
using namespace std;
void help()
{
cout << "\nThis program demonstrates kmeans clustering.\n"
"It generates an image with random points, then assigns a random number of cluster\n"
"centers and uses kmeans to move those cluster centers to their representitive location\n"
"Call\n"
"./kmeans\n" << endl;
}
2010-11-28 00:15:16 +01:00
int main( int argc, char** argv )
{
const int MAX_CLUSTERS = 5;
Scalar colorTab[] =
{
Scalar(0, 0, 255),
Scalar(0,255,0),
Scalar(255,100,100),
Scalar(255,0,255),
Scalar(0,255,255)
};
Mat img(500, 500, CV_8UC3);
RNG rng(12345);
for(;;)
{
int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
int i, sampleCount = rng.uniform(1, 1001);
Mat points(sampleCount, 1, CV_32FC2), labels;
clusterCount = MIN(clusterCount, sampleCount);
Mat centers(clusterCount, 1, points.type());
/* generate random sample from multigaussian distribution */
for( k = 0; k < clusterCount; k++ )
{
Point center;
center.x = rng.uniform(0, img.cols);
center.y = rng.uniform(0, img.rows);
Mat pointChunk = points.rowRange(k*sampleCount/clusterCount,
k == clusterCount - 1 ? sampleCount :
(k+1)*sampleCount/clusterCount);
rng.fill(pointChunk, CV_RAND_NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
}
randShuffle(points, 1, &rng);
kmeans(points, clusterCount, labels,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0),
3, KMEANS_PP_CENTERS, &centers);
img = Scalar::all(0);
for( i = 0; i < sampleCount; i++ )
{
int clusterIdx = labels.at<int>(i);
Point ipt = points.at<Point2f>(i);
circle( img, ipt, 2, colorTab[clusterIdx], CV_FILLED, CV_AA );
}
imshow("clusters", img);
char key = (char)waitKey();
if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
break;
}
return 0;
}