opencv/modules/features2d/src/descriptors.cpp

515 lines
18 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace std;
using namespace cv;
/****************************************************************************************\
* DescriptorExtractor *
\****************************************************************************************/
/*
* DescriptorExtractor
*/
struct RoiPredicate
{
RoiPredicate(float _minX, float _minY, float _maxX, float _maxY)
: minX(_minX), minY(_minY), maxX(_maxX), maxY(_maxY)
{}
bool operator()( const KeyPoint& keyPt) const
{
Point2f pt = keyPt.pt;
return (pt.x < minX) || (pt.x >= maxX) || (pt.y < minY) || (pt.y >= maxY);
}
float minX, minY, maxX, maxY;
};
void DescriptorExtractor::removeBorderKeypoints( vector<KeyPoint>& keypoints,
Size imageSize, int borderPixels )
{
keypoints.erase( remove_if(keypoints.begin(), keypoints.end(),
RoiPredicate((float)borderPixels, (float)borderPixels,
(float)(imageSize.width - borderPixels),
(float)(imageSize.height - borderPixels))),
keypoints.end());
}
/****************************************************************************************\
* SiftDescriptorExtractor *
\****************************************************************************************/
SiftDescriptorExtractor::SiftDescriptorExtractor( double magnification, bool isNormalize, bool recalculateAngles,
int nOctaves, int nOctaveLayers, int firstOctave, int angleMode )
: sift( magnification, isNormalize, recalculateAngles, nOctaves, nOctaveLayers, firstOctave, angleMode )
{}
void SiftDescriptorExtractor::compute( const Mat& image,
vector<KeyPoint>& keypoints,
Mat& descriptors) const
{
bool useProvidedKeypoints = true;
sift(image, Mat(), keypoints, descriptors, useProvidedKeypoints);
}
/****************************************************************************************\
* SurfDescriptorExtractor *
\****************************************************************************************/
SurfDescriptorExtractor::SurfDescriptorExtractor( int nOctaves,
int nOctaveLayers, bool extended )
: surf( 0.0, nOctaves, nOctaveLayers, extended )
{}
void SurfDescriptorExtractor::compute( const Mat& image,
vector<KeyPoint>& keypoints,
Mat& descriptors) const
{
// Compute descriptors for given keypoints
vector<float> _descriptors;
Mat mask;
bool useProvidedKeypoints = true;
surf(image, mask, keypoints, _descriptors, useProvidedKeypoints);
descriptors.create(keypoints.size(), surf.descriptorSize(), CV_32FC1);
assert( (int)_descriptors.size() == descriptors.rows * descriptors.cols );
std::copy(_descriptors.begin(), _descriptors.end(), descriptors.begin<float>());
}
/****************************************************************************************\
* GenericDescriptorMatch *
\****************************************************************************************/
/*
* KeyPointCollection
*/
void KeyPointCollection::add( const Mat& _image, const vector<KeyPoint>& _points )
{
// update m_start_indices
if( startIndices.empty() )
startIndices.push_back(0);
else
startIndices.push_back(*startIndices.rbegin() + points.rbegin()->size());
// add image and keypoints
images.push_back(_image);
points.push_back(_points);
}
KeyPoint KeyPointCollection::getKeyPoint( int index ) const
{
size_t i = 0;
for(; i < startIndices.size() && startIndices[i] <= index; i++);
i--;
assert(i < startIndices.size() && (size_t)index - startIndices[i] < points[i].size());
return points[i][index - startIndices[i]];
}
size_t KeyPointCollection::calcKeypointCount() const
{
if( startIndices.empty() )
return 0;
return *startIndices.rbegin() + points.rbegin()->size();
}
void KeyPointCollection::clear()
{
images.clear();
points.clear();
startIndices.clear();
}
/*
* GenericDescriptorMatch
*/
void GenericDescriptorMatch::add( KeyPointCollection& collection )
{
for( size_t i = 0; i < collection.images.size(); i++ )
add( collection.images[i], collection.points[i] );
}
void GenericDescriptorMatch::classify( const Mat& image, vector<cv::KeyPoint>& points )
{
vector<int> keypointIndices;
match( image, points, keypointIndices );
// remap keypoint indices to descriptors
for( size_t i = 0; i < keypointIndices.size(); i++ )
points[i].class_id = collection.getKeyPoint(keypointIndices[i]).class_id;
};
void GenericDescriptorMatch::clear()
{
collection.clear();
}
/****************************************************************************************\
* OneWayDescriptorMatch *
\****************************************************************************************/
OneWayDescriptorMatch::OneWayDescriptorMatch()
{}
OneWayDescriptorMatch::OneWayDescriptorMatch( const Params& _params)
{
initialize(_params);
}
OneWayDescriptorMatch::~OneWayDescriptorMatch()
{}
void OneWayDescriptorMatch::initialize( const Params& _params)
{
base.release();
params = _params;
}
void OneWayDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
{
if( base.empty() )
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename,
params.trainPath, params.trainImagesList);
size_t trainFeatureCount = keypoints.size();
base->Allocate( trainFeatureCount );
IplImage _image = image;
for( size_t i = 0; i < keypoints.size(); i++ )
base->InitializeDescriptor( i, &_image, keypoints[i], "" );
collection.add( Mat(), keypoints );
#if defined(_KDTREE)
base->ConvertDescriptorsArrayToTree();
#endif
}
void OneWayDescriptorMatch::add( KeyPointCollection& keypoints )
{
if( base.empty() )
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename,
params.trainPath, params.trainImagesList);
size_t trainFeatureCount = keypoints.calcKeypointCount();
base->Allocate( trainFeatureCount );
int count = 0;
for( size_t i = 0; i < keypoints.points.size(); i++ )
{
for( size_t j = 0; j < keypoints.points[i].size(); j++ )
{
IplImage img = keypoints.images[i];
base->InitializeDescriptor( count++, &img, keypoints.points[i][j], "" );
}
collection.add( Mat(), keypoints.points[i] );
}
#if defined(_KDTREE)
base->ConvertDescriptorsArrayToTree();
#endif
}
void OneWayDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points, vector<int>& indices)
{
indices.resize(points.size());
IplImage _image = image;
for( size_t i = 0; i < points.size(); i++ )
{
int descIdx = -1;
int poseIdx = -1;
float distance;
base->FindDescriptor( &_image, points[i].pt, descIdx, poseIdx, distance );
indices[i] = descIdx;
}
}
void OneWayDescriptorMatch::classify( const Mat& image, vector<KeyPoint>& points )
{
IplImage _image = image;
for( size_t i = 0; i < points.size(); i++ )
{
int descIdx = -1;
int poseIdx = -1;
float distance;
base->FindDescriptor(&_image, points[i].pt, descIdx, poseIdx, distance);
points[i].class_id = collection.getKeyPoint(descIdx).class_id;
}
}
/****************************************************************************************\
* CalonderDescriptorMatch *
\****************************************************************************************/
CalonderDescriptorMatch::Params::Params( const RNG& _rng, const PatchGenerator& _patchGen,
int _numTrees, int _depth, int _views,
size_t _reducedNumDim,
int _numQuantBits,
bool _printStatus,
int _patchSize ) :
rng(_rng), patchGen(_patchGen), numTrees(_numTrees), depth(_depth), views(_views),
patchSize(_patchSize), reducedNumDim(_reducedNumDim), numQuantBits(_numQuantBits), printStatus(_printStatus)
{}
CalonderDescriptorMatch::Params::Params( const string& _filename )
{
filename = _filename;
}
CalonderDescriptorMatch::CalonderDescriptorMatch()
{}
CalonderDescriptorMatch::CalonderDescriptorMatch( const Params& _params )
{
initialize(_params);
}
CalonderDescriptorMatch::~CalonderDescriptorMatch()
{}
void CalonderDescriptorMatch::initialize( const Params& _params )
{
classifier.release();
params = _params;
if( !params.filename.empty() )
{
classifier = new RTreeClassifier;
classifier->read( params.filename.c_str() );
}
}
void CalonderDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
{
if( params.filename.empty() )
collection.add( image, keypoints );
}
Mat CalonderDescriptorMatch::extractPatch( const Mat& image, const Point& pt, int patchSize ) const
{
const int offset = patchSize / 2;
return image( Rect(pt.x - offset, pt.y - offset, patchSize, patchSize) );
}
void CalonderDescriptorMatch::calcBestProbAndMatchIdx( const Mat& image, const Point& pt,
float& bestProb, int& bestMatchIdx, float* signature )
{
IplImage roi = extractPatch( image, pt, params.patchSize );
classifier->getSignature( &roi, signature );
bestProb = 0;
bestMatchIdx = -1;
for( size_t ci = 0; ci < (size_t)classifier->classes(); ci++ )
{
if( signature[ci] > bestProb )
{
bestProb = signature[ci];
bestMatchIdx = ci;
}
}
}
void CalonderDescriptorMatch::trainRTreeClassifier()
{
if( classifier.empty() )
{
assert( params.filename.empty() );
classifier = new RTreeClassifier;
vector<BaseKeypoint> baseKeyPoints;
vector<IplImage> iplImages( collection.images.size() );
for( size_t imageIdx = 0; imageIdx < collection.images.size(); imageIdx++ )
{
iplImages[imageIdx] = collection.images[imageIdx];
for( size_t pointIdx = 0; pointIdx < collection.points[imageIdx].size(); pointIdx++ )
{
BaseKeypoint bkp;
KeyPoint kp = collection.points[imageIdx][pointIdx];
bkp.x = cvRound(kp.pt.x);
bkp.y = cvRound(kp.pt.y);
bkp.image = &iplImages[imageIdx];
baseKeyPoints.push_back(bkp);
}
}
classifier->train( baseKeyPoints, params.rng, params.patchGen, params.numTrees,
params.depth, params.views, params.reducedNumDim, params.numQuantBits,
params.printStatus );
}
}
void CalonderDescriptorMatch::match( const Mat& image, vector<KeyPoint>& keypoints, vector<int>& indices )
{
trainRTreeClassifier();
float bestProb = 0;
AutoBuffer<float> signature( classifier->classes() );
indices.resize( keypoints.size() );
for( size_t pi = 0; pi < keypoints.size(); pi++ )
calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, indices[pi], signature );
}
void CalonderDescriptorMatch::classify( const Mat& image, vector<KeyPoint>& keypoints )
{
trainRTreeClassifier();
AutoBuffer<float> signature( classifier->classes() );
for( size_t pi = 0; pi < keypoints.size(); pi++ )
{
float bestProb = 0;
int bestMatchIdx = -1;
calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, bestMatchIdx, signature );
keypoints[pi].class_id = collection.getKeyPoint(bestMatchIdx).class_id;
}
}
/****************************************************************************************\
* FernDescriptorMatch *
\****************************************************************************************/
FernDescriptorMatch::Params::Params( int _nclasses, int _patchSize, int _signatureSize,
int _nstructs, int _structSize, int _nviews, int _compressionMethod,
const PatchGenerator& _patchGenerator ) :
nclasses(_nclasses), patchSize(_patchSize), signatureSize(_signatureSize),
nstructs(_nstructs), structSize(_structSize), nviews(_nviews),
compressionMethod(_compressionMethod), patchGenerator(_patchGenerator)
{}
FernDescriptorMatch::Params::Params( const string& _filename )
{
filename = _filename;
}
FernDescriptorMatch::FernDescriptorMatch()
{}
FernDescriptorMatch::FernDescriptorMatch( const Params& _params )
{
params = _params;
}
FernDescriptorMatch::~FernDescriptorMatch()
{}
void FernDescriptorMatch::initialize( const Params& _params )
{
classifier.release();
params = _params;
if( !params.filename.empty() )
{
classifier = new FernClassifier;
FileStorage fs(params.filename, FileStorage::READ);
if( fs.isOpened() )
classifier->read( fs.getFirstTopLevelNode() );
}
}
void FernDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
{
if( params.filename.empty() )
collection.add( image, keypoints );
}
void FernDescriptorMatch::trainFernClassifier()
{
if( classifier.empty() )
{
assert( params.filename.empty() );
vector<Point2f> points;
vector<Ptr<Mat> > refimgs( collection.images.size() );
vector<int> labels;
for( size_t imageIdx = 0; imageIdx < collection.images.size(); imageIdx++ )
{
refimgs[imageIdx] = &collection.images[imageIdx];
for( size_t pointIdx = 0; pointIdx < collection.points[imageIdx].size(); pointIdx++ )
{
points.push_back(collection.points[imageIdx][pointIdx].pt);
labels.push_back(imageIdx);
}
}
classifier = new FernClassifier( points, refimgs, labels, params.nclasses, params.patchSize,
params.signatureSize, params.nstructs, params.structSize, params.nviews,
params.compressionMethod, params.patchGenerator );
}
}
void FernDescriptorMatch::calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt,
float& bestProb, int& bestMatchIdx, vector<float>& signature )
{
(*classifier)( image, pt, signature);
bestProb = 0;
bestMatchIdx = -1;
for( size_t ci = 0; ci < (size_t)classifier->getClassCount(); ci++ )
{
if( signature[ci] > bestProb )
{
bestProb = signature[ci];
bestMatchIdx = ci;
}
}
}
void FernDescriptorMatch::match( const Mat& image, vector<KeyPoint>& keypoints, vector<int>& indices )
{
trainFernClassifier();
float bestProb = 0;
indices.resize( keypoints.size() );
vector<float> signature( (size_t)classifier->getClassCount() );
for( size_t pi = 0; pi < keypoints.size(); pi++ )
calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, indices[pi], signature );
}
void FernDescriptorMatch::classify( const Mat& image, vector<KeyPoint>& keypoints )
{
trainFernClassifier();
vector<float> signature( (size_t)classifier->getClassCount() );
for( size_t pi = 0; pi < keypoints.size(); pi++ )
{
float bestProb = 0;
int bestMatchIdx = -1;
calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, bestMatchIdx, signature );
keypoints[pi].class_id = collection.getKeyPoint(bestMatchIdx).class_id;
}
}