2010-05-11 17:44:00 +00:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
#define MAX_FV_SIZE 5
|
|
|
|
#define BLOB_NUM 5
|
|
|
|
|
|
|
|
typedef struct DefBlobFVN
|
|
|
|
{
|
2012-06-12 14:46:12 +00:00
|
|
|
CvBlob blob;
|
|
|
|
CvBlob BlobSeq[BLOB_NUM];
|
|
|
|
int state;
|
|
|
|
int LastFrame;
|
|
|
|
int FrameNum;
|
2010-05-11 17:44:00 +00:00
|
|
|
} DefBlobFVN;
|
|
|
|
|
|
|
|
class CvBlobTrackFVGenN: public CvBlobTrackFVGen
|
|
|
|
{
|
|
|
|
private:
|
2012-06-12 14:46:12 +00:00
|
|
|
CvBlobSeq m_BlobList;
|
|
|
|
CvMemStorage* m_pMem;
|
|
|
|
CvSeq* m_pFVSeq;
|
|
|
|
float m_FVMax[MAX_FV_SIZE];
|
|
|
|
float m_FVMin[MAX_FV_SIZE];
|
|
|
|
float m_FVVar[MAX_FV_SIZE];
|
|
|
|
int m_Dim;
|
|
|
|
CvBlob m_BlobSeq[BLOB_NUM];
|
|
|
|
int m_Frame;
|
|
|
|
int m_State;
|
|
|
|
int m_LastFrame;
|
|
|
|
int m_ClearFlag;
|
|
|
|
void Clear()
|
|
|
|
{
|
|
|
|
if(m_pMem)
|
|
|
|
{
|
|
|
|
cvClearMemStorage(m_pMem);
|
|
|
|
m_pFVSeq = cvCreateSeq(0,sizeof(CvSeq),sizeof(float)*(m_Dim+1), m_pMem);
|
|
|
|
m_ClearFlag = 1;
|
|
|
|
}
|
|
|
|
}
|
2010-05-11 17:44:00 +00:00
|
|
|
public:
|
2012-06-12 14:46:12 +00:00
|
|
|
CvBlobTrackFVGenN(int dim = 2 ):m_BlobList(sizeof(DefBlobFVN))
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
assert(dim <= MAX_FV_SIZE);
|
|
|
|
m_Dim = dim;
|
|
|
|
for(i=0; i<m_Dim; ++i)
|
|
|
|
{
|
|
|
|
m_FVVar[i] = 0.01f;
|
|
|
|
m_FVMax[i] = 1;
|
|
|
|
m_FVMin[i] = 0;
|
|
|
|
}
|
|
|
|
m_Frame = 0;
|
|
|
|
m_State = 0;
|
|
|
|
m_pMem = cvCreateMemStorage();
|
|
|
|
m_pFVSeq = NULL;
|
|
|
|
Clear();
|
|
|
|
|
|
|
|
switch(dim) {
|
|
|
|
case 2: SetModuleName("P"); break;
|
|
|
|
case 4: SetModuleName("PV"); break;
|
|
|
|
case 5: SetModuleName("PVS"); break;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
~CvBlobTrackFVGenN()
|
|
|
|
{
|
|
|
|
if(m_pMem)cvReleaseMemStorage(&m_pMem);
|
|
|
|
};
|
|
|
|
|
|
|
|
void AddBlob(CvBlob* pBlob)
|
|
|
|
{
|
|
|
|
float FV[MAX_FV_SIZE+1];
|
|
|
|
DefBlobFVN* pFVBlob = (DefBlobFVN*)m_BlobList.GetBlobByID(CV_BLOB_ID(pBlob));
|
|
|
|
|
|
|
|
if(!m_ClearFlag) Clear();
|
|
|
|
|
|
|
|
if(pFVBlob==NULL)
|
|
|
|
{
|
|
|
|
DefBlobFVN BlobNew;
|
|
|
|
BlobNew.blob = pBlob[0];
|
|
|
|
BlobNew.LastFrame = m_Frame;
|
|
|
|
BlobNew.state = 0;;
|
|
|
|
BlobNew.FrameNum = 0;
|
|
|
|
m_BlobList.AddBlob((CvBlob*)&BlobNew);
|
|
|
|
pFVBlob = (DefBlobFVN*)m_BlobList.GetBlobByID(CV_BLOB_ID(pBlob));
|
|
|
|
} /* Add new record if necessary. */
|
|
|
|
|
|
|
|
pFVBlob->blob = pBlob[0];
|
|
|
|
|
|
|
|
/* Shift: */
|
|
|
|
for(int i=(BLOB_NUM-1); i>0; --i)
|
|
|
|
{
|
|
|
|
pFVBlob->BlobSeq[i] = pFVBlob->BlobSeq[i-1];
|
|
|
|
}
|
|
|
|
|
|
|
|
pFVBlob->BlobSeq[0] = pBlob[0];
|
|
|
|
|
|
|
|
if(m_Dim>0)
|
|
|
|
{ /* Calculate FV position: */
|
|
|
|
FV[0] = CV_BLOB_X(pBlob);
|
|
|
|
FV[1] = CV_BLOB_Y(pBlob);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(m_Dim<=2)
|
|
|
|
{ /* Add new FV if position is enough: */
|
|
|
|
*(int*)(FV+m_Dim) = CV_BLOB_ID(pBlob);
|
|
|
|
cvSeqPush( m_pFVSeq, FV );
|
|
|
|
}
|
|
|
|
else if(pFVBlob->FrameNum > BLOB_NUM)
|
|
|
|
{ /* Calculate velocity for more complex FV: */
|
|
|
|
float AverVx = 0;
|
|
|
|
float AverVy = 0;
|
|
|
|
{ /* Average velocity: */
|
|
|
|
CvBlob* pBlobSeq = pFVBlob->BlobSeq;
|
|
|
|
for(int i=1;i<BLOB_NUM;++i)
|
|
|
|
{
|
|
|
|
AverVx += CV_BLOB_X(pBlobSeq+i-1)-CV_BLOB_X(pBlobSeq+i);
|
|
|
|
AverVy += CV_BLOB_Y(pBlobSeq+i-1)-CV_BLOB_Y(pBlobSeq+i);
|
|
|
|
}
|
|
|
|
AverVx /= BLOB_NUM-1;
|
|
|
|
AverVy /= BLOB_NUM-1;
|
|
|
|
|
|
|
|
FV[2] = AverVx;
|
|
|
|
FV[3] = AverVy;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(m_Dim>4)
|
|
|
|
{ /* State duration: */
|
|
|
|
float T = (CV_BLOB_WX(pBlob)+CV_BLOB_WY(pBlob))*0.01f;
|
|
|
|
|
|
|
|
if( fabs(AverVx) < T && fabs(AverVy) < T)
|
|
|
|
pFVBlob->state++;
|
|
|
|
else
|
|
|
|
pFVBlob->state=0;
|
|
|
|
FV[4] = (float)pFVBlob->state;
|
|
|
|
} /* State duration. */
|
|
|
|
|
|
|
|
/* Add new FV: */
|
|
|
|
*(int*)(FV+m_Dim) = CV_BLOB_ID(pBlob);
|
|
|
|
cvSeqPush( m_pFVSeq, FV );
|
|
|
|
|
|
|
|
} /* If velocity is calculated. */
|
|
|
|
|
|
|
|
pFVBlob->FrameNum++;
|
|
|
|
pFVBlob->LastFrame = m_Frame;
|
|
|
|
}; /* AddBlob */
|
|
|
|
|
|
|
|
void Process(IplImage* pImg, IplImage* /*pFG*/)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
if(!m_ClearFlag) Clear();
|
|
|
|
for(i=m_BlobList.GetBlobNum(); i>0; --i)
|
|
|
|
{ /* Delete unused blob: */
|
|
|
|
DefBlobFVN* pFVBlob = (DefBlobFVN*)m_BlobList.GetBlob(i-1);
|
|
|
|
if(pFVBlob->LastFrame < m_Frame)
|
|
|
|
{
|
|
|
|
m_BlobList.DelBlob(i-1);
|
|
|
|
}
|
|
|
|
} /* Check next blob in list. */
|
|
|
|
|
|
|
|
m_FVMin[0] = 0;
|
|
|
|
m_FVMin[1] = 0;
|
|
|
|
m_FVMax[0] = (float)(pImg->width-1);
|
|
|
|
m_FVMax[1] = (float)(pImg->height-1);
|
|
|
|
m_FVVar[0] = m_FVMax[0]*0.01f;
|
|
|
|
m_FVVar[1] = m_FVMax[1]*0.01f;
|
|
|
|
m_FVVar[2] = (float)(pImg->width-1)/1440.0f;
|
|
|
|
m_FVMax[2] = (float)(pImg->width-1)*0.02f;
|
|
|
|
m_FVMin[2] = -m_FVMax[2];
|
|
|
|
m_FVVar[3] = (float)(pImg->width-1)/1440.0f;
|
|
|
|
m_FVMax[3] = (float)(pImg->height-1)*0.02f;
|
|
|
|
m_FVMin[3] = -m_FVMax[3];
|
|
|
|
m_FVMax[4] = 25*32.0f; /* max state is 32 sec */
|
|
|
|
m_FVMin[4] = 0;
|
|
|
|
m_FVVar[4] = 10;
|
|
|
|
|
|
|
|
m_Frame++;
|
|
|
|
m_ClearFlag = 0;
|
|
|
|
};
|
|
|
|
virtual void Release(){delete this;};
|
|
|
|
virtual int GetFVSize(){return m_Dim;};
|
|
|
|
virtual int GetFVNum()
|
|
|
|
{
|
|
|
|
return m_pFVSeq->total;
|
|
|
|
};
|
|
|
|
|
|
|
|
virtual float* GetFV(int index, int* pFVID)
|
|
|
|
{
|
|
|
|
float* pFV = (float*)cvGetSeqElem( m_pFVSeq, index );
|
|
|
|
if(pFVID)pFVID[0] = *(int*)(pFV+m_Dim);
|
|
|
|
return pFV;
|
|
|
|
};
|
|
|
|
virtual float* GetFVMin(){return m_FVMin;}; /* returned pointer to array of minimal values of FV, if return 0 then FVrange is not exist */
|
|
|
|
virtual float* GetFVMax(){return m_FVMax;}; /* returned pointer to array of maximal values of FV, if return 0 then FVrange is not exist */
|
|
|
|
virtual float* GetFVVar(){return m_FVVar;}; /* returned pointer to array of maximal values of FV, if return 0 then FVrange is not exist */
|
2010-05-11 17:44:00 +00:00
|
|
|
};/* CvBlobTrackFVGenN */
|
|
|
|
|
2012-06-07 17:21:29 +00:00
|
|
|
inline CvBlobTrackFVGen* cvCreateFVGenP(){return (CvBlobTrackFVGen*)new CvBlobTrackFVGenN(2);}
|
|
|
|
inline CvBlobTrackFVGen* cvCreateFVGenPV(){return (CvBlobTrackFVGen*)new CvBlobTrackFVGenN(4);}
|
|
|
|
inline CvBlobTrackFVGen* cvCreateFVGenPVS(){return (CvBlobTrackFVGen*)new CvBlobTrackFVGenN(5);}
|
2010-05-11 17:44:00 +00:00
|
|
|
#undef MAX_FV_SIZE
|
|
|
|
|
|
|
|
#define MAX_FV_SIZE 4
|
|
|
|
class CvBlobTrackFVGenSS: public CvBlobTrackFVGen
|
|
|
|
{
|
|
|
|
private:
|
2012-06-12 14:46:12 +00:00
|
|
|
CvBlobSeq m_BlobList;
|
|
|
|
CvMemStorage* m_pMem;
|
|
|
|
CvSeq* m_pFVSeq;
|
|
|
|
float m_FVMax[MAX_FV_SIZE];
|
|
|
|
float m_FVMin[MAX_FV_SIZE];
|
|
|
|
float m_FVVar[MAX_FV_SIZE];
|
|
|
|
int m_Dim;
|
|
|
|
CvBlob m_BlobSeq[BLOB_NUM];
|
|
|
|
int m_Frame;
|
|
|
|
int m_State;
|
|
|
|
int m_LastFrame;
|
|
|
|
int m_ClearFlag;
|
|
|
|
void Clear()
|
|
|
|
{
|
|
|
|
cvClearMemStorage(m_pMem);
|
|
|
|
m_pFVSeq = cvCreateSeq(0,sizeof(CvSeq),sizeof(float)*(m_Dim+1), m_pMem);
|
|
|
|
m_ClearFlag = 1;
|
|
|
|
}
|
2010-05-11 17:44:00 +00:00
|
|
|
public:
|
2012-06-12 14:46:12 +00:00
|
|
|
CvBlobTrackFVGenSS(int dim = 2 ):m_BlobList(sizeof(DefBlobFVN))
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
assert(dim <= MAX_FV_SIZE);
|
|
|
|
m_Dim = dim;
|
|
|
|
for(i=0;i<m_Dim;++i)
|
|
|
|
{
|
|
|
|
m_FVVar[i] = 0.01f;
|
|
|
|
m_FVMax[i] = 1;
|
|
|
|
m_FVMin[i] = 0;
|
|
|
|
}
|
|
|
|
m_Frame = 0;
|
|
|
|
m_State = 0;
|
|
|
|
m_pMem = cvCreateMemStorage();
|
|
|
|
m_pFVSeq = NULL;
|
|
|
|
|
|
|
|
SetModuleName("SS");
|
|
|
|
};
|
|
|
|
~CvBlobTrackFVGenSS()
|
|
|
|
{
|
|
|
|
if(m_pMem)cvReleaseMemStorage(&m_pMem);
|
|
|
|
};
|
|
|
|
|
|
|
|
void AddBlob(CvBlob* pBlob)
|
|
|
|
{
|
|
|
|
//float FV[MAX_FV_SIZE+1];
|
|
|
|
DefBlobFVN* pFVBlob = (DefBlobFVN*)m_BlobList.GetBlobByID(CV_BLOB_ID(pBlob));
|
|
|
|
|
|
|
|
if(!m_ClearFlag) Clear();
|
|
|
|
|
|
|
|
if(pFVBlob==NULL)
|
|
|
|
{
|
|
|
|
DefBlobFVN BlobNew;
|
|
|
|
BlobNew.blob = pBlob[0];
|
|
|
|
BlobNew.LastFrame = m_Frame;
|
|
|
|
BlobNew.state = 0;;
|
|
|
|
BlobNew.FrameNum = 0;
|
|
|
|
m_BlobList.AddBlob((CvBlob*)&BlobNew);
|
|
|
|
pFVBlob = (DefBlobFVN*)m_BlobList.GetBlobByID(CV_BLOB_ID(pBlob));
|
|
|
|
} /* Add new record if necessary. */
|
|
|
|
|
|
|
|
/* Shift: */
|
|
|
|
for(int i=(BLOB_NUM-1); i>0; --i)
|
|
|
|
{
|
|
|
|
pFVBlob->BlobSeq[i] = pFVBlob->BlobSeq[i-1];
|
|
|
|
}
|
|
|
|
|
|
|
|
pFVBlob->BlobSeq[0] = pBlob[0];
|
|
|
|
|
|
|
|
if(pFVBlob->FrameNum > BLOB_NUM)
|
|
|
|
{ /* Average velocity: */
|
|
|
|
CvBlob* pBlobSeq = pFVBlob->BlobSeq;
|
|
|
|
float T = (CV_BLOB_WX(pBlob)+CV_BLOB_WY(pBlob))*0.01f;
|
|
|
|
float AverVx = 0;
|
|
|
|
float AverVy = 0;
|
|
|
|
for(int i=1; i<BLOB_NUM; ++i)
|
|
|
|
{
|
|
|
|
AverVx += CV_BLOB_X(pBlobSeq+i-1)-CV_BLOB_X(pBlobSeq+i);
|
|
|
|
AverVy += CV_BLOB_Y(pBlobSeq+i-1)-CV_BLOB_Y(pBlobSeq+i);
|
|
|
|
}
|
|
|
|
AverVx /= BLOB_NUM-1;
|
|
|
|
AverVy /= BLOB_NUM-1;
|
|
|
|
|
|
|
|
if( fabs(AverVx) < T && fabs(AverVy) < T)
|
|
|
|
pFVBlob->state++;
|
|
|
|
else
|
|
|
|
pFVBlob->state=0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(pFVBlob->state == 5)
|
|
|
|
{ /* Object is stopped: */
|
|
|
|
float FV[MAX_FV_SIZE];
|
|
|
|
FV[0] = pFVBlob->blob.x;
|
|
|
|
FV[1] = pFVBlob->blob.y;
|
|
|
|
FV[2] = pFVBlob->BlobSeq[0].x;
|
|
|
|
FV[3] = pFVBlob->BlobSeq[0].y;
|
|
|
|
*(int*)(FV+m_Dim) = CV_BLOB_ID(pBlob);
|
|
|
|
cvSeqPush( m_pFVSeq, FV );
|
|
|
|
} /* Object is stopped. */
|
|
|
|
|
|
|
|
pFVBlob->FrameNum++;
|
|
|
|
pFVBlob->LastFrame = m_Frame;
|
|
|
|
}; /* AddBlob */
|
|
|
|
void Process(IplImage* pImg, IplImage* /*pFG*/)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if(!m_ClearFlag) Clear();
|
|
|
|
|
|
|
|
for(i=m_BlobList.GetBlobNum();i>0;--i)
|
|
|
|
{ /* Delete unused blob: */
|
|
|
|
DefBlobFVN* pFVBlob = (DefBlobFVN*)m_BlobList.GetBlob(i-1);
|
|
|
|
if(pFVBlob->LastFrame < m_Frame)
|
|
|
|
{
|
|
|
|
float FV[MAX_FV_SIZE+1];
|
|
|
|
FV[0] = pFVBlob->blob.x;
|
|
|
|
FV[1] = pFVBlob->blob.y;
|
|
|
|
FV[2] = pFVBlob->BlobSeq[0].x;
|
|
|
|
FV[3] = pFVBlob->BlobSeq[0].y;
|
|
|
|
*(int*)(FV+m_Dim) = CV_BLOB_ID(pFVBlob);
|
|
|
|
cvSeqPush( m_pFVSeq, FV );
|
|
|
|
m_BlobList.DelBlob(i-1);
|
|
|
|
}
|
|
|
|
} /* Check next blob in list. */
|
|
|
|
|
|
|
|
/* Set max min range: */
|
|
|
|
m_FVMin[0] = 0;
|
|
|
|
m_FVMin[1] = 0;
|
|
|
|
m_FVMin[2] = 0;
|
|
|
|
m_FVMin[3] = 0;
|
|
|
|
m_FVMax[0] = (float)(pImg->width-1);
|
|
|
|
m_FVMax[1] = (float)(pImg->height-1);
|
|
|
|
m_FVMax[2] = (float)(pImg->width-1);
|
|
|
|
m_FVMax[3] = (float)(pImg->height-1);
|
|
|
|
m_FVVar[0] = m_FVMax[0]*0.01f;
|
|
|
|
m_FVVar[1] = m_FVMax[1]*0.01f;
|
|
|
|
m_FVVar[2] = m_FVMax[2]*0.01f;
|
|
|
|
m_FVVar[3] = m_FVMax[3]*0.01f;
|
|
|
|
|
|
|
|
m_Frame++;
|
|
|
|
m_ClearFlag = 0;
|
|
|
|
};
|
|
|
|
virtual void Release(){delete this;};
|
|
|
|
virtual int GetFVSize(){return m_Dim;};
|
|
|
|
virtual int GetFVNum()
|
|
|
|
{
|
|
|
|
return m_pFVSeq->total;
|
|
|
|
};
|
|
|
|
|
|
|
|
virtual float* GetFV(int index, int* pFVID)
|
|
|
|
{
|
|
|
|
float* pFV = (float*)cvGetSeqElem( m_pFVSeq, index );
|
|
|
|
if(pFVID)pFVID[0] = *(int*)(pFV+m_Dim);
|
|
|
|
return pFV;
|
|
|
|
};
|
|
|
|
|
|
|
|
virtual float* GetFVMin(){return m_FVMin;}; /* returned pointer to array of minimal values of FV, if return 0 then FVrange is not exist */
|
|
|
|
virtual float* GetFVMax(){return m_FVMax;}; /* returned pointer to array of maximal values of FV, if return 0 then FVrange is not exist */
|
|
|
|
virtual float* GetFVVar(){return m_FVVar;}; /* returned pointer to array of maximal values of FV, if return 0 then FVrange is not exist */
|
2010-05-11 17:44:00 +00:00
|
|
|
};/* CvBlobTrackFVGenSS */
|
|
|
|
|
2012-06-07 17:21:29 +00:00
|
|
|
inline CvBlobTrackFVGen* cvCreateFVGenSS(){return (CvBlobTrackFVGen*)new CvBlobTrackFVGenSS;}
|
2010-05-11 17:44:00 +00:00
|
|
|
|
|
|
|
/*======================= TRAJECTORY ANALYZER MODULES =====================*/
|
|
|
|
/* Trajectory Analyser module */
|
|
|
|
#define SPARSE 0
|
|
|
|
#define ND 1
|
|
|
|
#define BYSIZE -1
|
|
|
|
class DefMat
|
|
|
|
{
|
|
|
|
private:
|
2012-06-12 14:46:12 +00:00
|
|
|
CvSparseMatIterator m_SparseIterator;
|
|
|
|
CvSparseNode* m_pSparseNode;
|
|
|
|
int* m_IDXs;
|
|
|
|
int m_Dim;
|
2010-05-11 17:44:00 +00:00
|
|
|
|
|
|
|
public:
|
2012-06-12 14:46:12 +00:00
|
|
|
CvSparseMat* m_pSparse;
|
|
|
|
CvMatND* m_pND;
|
|
|
|
int m_Volume;
|
|
|
|
int m_Max;
|
|
|
|
DefMat(int dim = 0, int* sizes = NULL, int type = SPARSE)
|
|
|
|
{
|
|
|
|
/* Create sparse or ND matrix but not both: */
|
|
|
|
m_pSparseNode = NULL;
|
|
|
|
m_pSparse = NULL;
|
|
|
|
m_pND = NULL;
|
|
|
|
m_Volume = 0;
|
|
|
|
m_Max = 0;
|
|
|
|
m_IDXs = NULL;
|
|
|
|
m_Dim = 0;
|
|
|
|
if(dim>0 && sizes != 0)
|
|
|
|
Realloc(dim, sizes, type);
|
|
|
|
}
|
|
|
|
~DefMat()
|
|
|
|
{
|
|
|
|
if(m_pSparse)cvReleaseSparseMat(&m_pSparse);
|
|
|
|
if(m_pND)cvReleaseMatND(&m_pND);
|
|
|
|
if(m_IDXs) cvFree(&m_IDXs);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Realloc(int dim, int* sizes, int type = SPARSE)
|
|
|
|
{
|
|
|
|
if(m_pSparse)cvReleaseSparseMat(&m_pSparse);
|
|
|
|
if(m_pND)cvReleaseMatND(&m_pND);
|
|
|
|
|
|
|
|
if(type == BYSIZE )
|
|
|
|
{
|
|
|
|
int size = 0;
|
|
|
|
int i;
|
|
|
|
for(size=1,i=0;i<dim;++i)
|
|
|
|
{
|
|
|
|
size *= sizes[i];
|
|
|
|
}
|
|
|
|
size *= sizeof(int);
|
|
|
|
if(size > (2<<20))
|
|
|
|
{ /* if size > 1M */
|
|
|
|
type = SPARSE;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
type = ND;
|
|
|
|
}
|
|
|
|
} /* Define matrix type. */
|
|
|
|
|
|
|
|
if(type == SPARSE)
|
|
|
|
{
|
|
|
|
m_pSparse = cvCreateSparseMat( dim, sizes, CV_32SC1 );
|
|
|
|
m_Dim = dim;
|
|
|
|
}
|
|
|
|
if(type == ND )
|
|
|
|
{
|
|
|
|
m_pND = cvCreateMatND( dim, sizes, CV_32SC1 );
|
|
|
|
cvZero(m_pND);
|
|
|
|
m_IDXs = (int*)cvAlloc(sizeof(int)*dim);
|
|
|
|
m_Dim = dim;
|
|
|
|
}
|
|
|
|
m_Volume = 0;
|
|
|
|
m_Max = 0;
|
|
|
|
}
|
|
|
|
void Save(const char* File)
|
|
|
|
{
|
|
|
|
if(m_pSparse)cvSave(File, m_pSparse );
|
|
|
|
if(m_pND)cvSave(File, m_pND );
|
|
|
|
}
|
|
|
|
void Save(CvFileStorage* fs, const char* name)
|
|
|
|
{
|
|
|
|
if(m_pSparse)
|
|
|
|
{
|
|
|
|
cvWrite(fs, name, m_pSparse );
|
|
|
|
}
|
|
|
|
else if(m_pND)
|
|
|
|
{
|
|
|
|
cvWrite(fs, name, m_pND );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void Load(const char* File)
|
|
|
|
{
|
|
|
|
CvFileStorage* fs = cvOpenFileStorage( File, NULL, CV_STORAGE_READ );
|
|
|
|
if(fs)
|
|
|
|
{
|
|
|
|
void* ptr;
|
|
|
|
if(m_pSparse) cvReleaseSparseMat(&m_pSparse);
|
|
|
|
if(m_pND) cvReleaseMatND(&m_pND);
|
|
|
|
m_Volume = 0;
|
|
|
|
m_Max = 0;
|
|
|
|
ptr = cvLoad(File);
|
|
|
|
if(ptr && CV_IS_MATND_HDR(ptr)) m_pND = (CvMatND*)ptr;
|
|
|
|
if(ptr && CV_IS_SPARSE_MAT_HDR(ptr)) m_pSparse = (CvSparseMat*)ptr;
|
|
|
|
cvReleaseFileStorage(&fs);
|
|
|
|
}
|
|
|
|
AfterLoad();
|
|
|
|
} /* Load. */
|
|
|
|
|
|
|
|
void Load(CvFileStorage* fs, CvFileNode* node, const char* name)
|
|
|
|
{
|
|
|
|
CvFileNode* n = cvGetFileNodeByName(fs,node,name);
|
|
|
|
void* ptr = n?cvRead(fs,n):NULL;
|
|
|
|
if(ptr)
|
|
|
|
{
|
|
|
|
if(m_pSparse) cvReleaseSparseMat(&m_pSparse);
|
|
|
|
if(m_pND) cvReleaseMatND(&m_pND);
|
|
|
|
m_Volume = 0;
|
|
|
|
m_Max = 0;
|
|
|
|
if(CV_IS_MATND_HDR(ptr)) m_pND = (CvMatND*)ptr;
|
|
|
|
if(CV_IS_SPARSE_MAT_HDR(ptr)) m_pSparse = (CvSparseMat*)ptr;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
printf("WARNING!!! Can't load %s matrix\n",name);
|
|
|
|
}
|
|
|
|
AfterLoad();
|
|
|
|
} /* Load. */
|
|
|
|
|
|
|
|
void AfterLoad()
|
|
|
|
{
|
|
|
|
m_Volume = 0;
|
|
|
|
m_Max = 0;
|
|
|
|
if(m_pSparse)
|
|
|
|
{ /* Calculate Volume of loaded hist: */
|
|
|
|
CvSparseMatIterator mat_iterator;
|
|
|
|
CvSparseNode* node = cvInitSparseMatIterator( m_pSparse, &mat_iterator );
|
|
|
|
|
|
|
|
for( ; node != 0; node = cvGetNextSparseNode( &mat_iterator ))
|
|
|
|
{
|
|
|
|
int val = *(int*)CV_NODE_VAL( m_pSparse, node ); /* get value of the element
|
2010-05-11 17:44:00 +00:00
|
|
|
(assume that the type is CV_32SC1) */
|
2012-06-12 14:46:12 +00:00
|
|
|
m_Volume += val;
|
|
|
|
if(m_Max < val)m_Max = val;
|
|
|
|
}
|
|
|
|
} /* Calculate Volume of loaded hist. */
|
|
|
|
|
|
|
|
if(m_pND)
|
|
|
|
{ /* Calculate Volume of loaded hist: */
|
|
|
|
CvMat mat;
|
|
|
|
double max_val;
|
|
|
|
double vol;
|
|
|
|
cvGetMat( m_pND, &mat, NULL, 1 );
|
|
|
|
|
|
|
|
vol = cvSum(&mat).val[0];
|
|
|
|
m_Volume = cvRound(vol);
|
|
|
|
cvMinMaxLoc( &mat, NULL, &max_val);
|
|
|
|
m_Max = cvRound(max_val);
|
|
|
|
/* MUST BE WRITTEN LATER */
|
|
|
|
} /* Calculate Volume of loaded hist. */
|
|
|
|
} /* AfterLoad. */
|
|
|
|
|
|
|
|
int* GetPtr(int* indx)
|
|
|
|
{
|
|
|
|
if(m_pSparse) return (int*)cvPtrND( m_pSparse, indx, NULL, 1, NULL);
|
|
|
|
if(m_pND) return (int*)cvPtrND( m_pND, indx, NULL, 1, NULL);
|
|
|
|
return NULL;
|
|
|
|
} /* GetPtr. */
|
|
|
|
|
|
|
|
int GetVal(int* indx)
|
|
|
|
{
|
|
|
|
int* p = GetPtr(indx);
|
|
|
|
if(p)return p[0];
|
|
|
|
return -1;
|
|
|
|
} /* GetVal. */
|
|
|
|
|
|
|
|
int Add(int* indx, int val)
|
|
|
|
{
|
|
|
|
int NewVal;
|
|
|
|
int* pVal = GetPtr(indx);
|
|
|
|
if(pVal == NULL) return -1;
|
|
|
|
pVal[0] += val;
|
|
|
|
NewVal = pVal[0];
|
|
|
|
m_Volume += val;
|
|
|
|
if(m_Max < NewVal)m_Max = NewVal;
|
|
|
|
return NewVal;
|
|
|
|
} /* Add. */
|
|
|
|
|
|
|
|
void Add(DefMat* pMatAdd)
|
|
|
|
{
|
|
|
|
int* pIDXS = NULL;
|
|
|
|
int Val = 0;
|
|
|
|
for(Val = pMatAdd->GetNext(&pIDXS, 1 );pIDXS;Val=pMatAdd->GetNext(&pIDXS, 0 ))
|
|
|
|
{
|
|
|
|
Add(pIDXS,Val);
|
|
|
|
}
|
|
|
|
} /* Add. */
|
|
|
|
|
|
|
|
int SetMax(int* indx, int val)
|
|
|
|
{
|
|
|
|
int NewVal;
|
|
|
|
int* pVal = GetPtr(indx);
|
|
|
|
if(pVal == NULL) return -1;
|
|
|
|
if(val > pVal[0])
|
|
|
|
{
|
|
|
|
m_Volume += val-pVal[0];
|
|
|
|
pVal[0] = val;
|
|
|
|
}
|
|
|
|
NewVal = pVal[0];
|
|
|
|
if(m_Max < NewVal)m_Max = NewVal;
|
|
|
|
return NewVal;
|
|
|
|
} /* Add. */
|
|
|
|
|
|
|
|
int GetNext(int** pIDXS, int init = 0)
|
|
|
|
{
|
|
|
|
int Val = 0;
|
|
|
|
pIDXS[0] = NULL;
|
|
|
|
if(m_pSparse)
|
|
|
|
{
|
|
|
|
m_pSparseNode = (init || m_pSparseNode==NULL)?
|
|
|
|
cvInitSparseMatIterator( m_pSparse, &m_SparseIterator ):
|
|
|
|
cvGetNextSparseNode( &m_SparseIterator );
|
|
|
|
|
|
|
|
if(m_pSparseNode)
|
|
|
|
{
|
|
|
|
int* pVal = (int*)CV_NODE_VAL( m_pSparse, m_pSparseNode );
|
|
|
|
if(pVal)Val = pVal[0];
|
|
|
|
pIDXS[0] = CV_NODE_IDX( m_pSparse, m_pSparseNode );
|
|
|
|
}
|
|
|
|
}/* Sparse matrix. */
|
|
|
|
|
|
|
|
if(m_pND)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
if(init)
|
|
|
|
{
|
|
|
|
for(i=0;i<m_Dim;++i)
|
|
|
|
{
|
|
|
|
m_IDXs[i] = cvGetDimSize( m_pND, i )-1;
|
|
|
|
}
|
|
|
|
pIDXS[0] = m_IDXs;
|
|
|
|
Val = GetVal(m_IDXs);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for(i=0;i<m_Dim;++i)
|
|
|
|
{
|
|
|
|
if((m_IDXs[i]--)>0)
|
|
|
|
break;
|
|
|
|
m_IDXs[i] = cvGetDimSize( m_pND, i )-1;
|
|
|
|
}
|
|
|
|
if(i==m_Dim)
|
|
|
|
{
|
|
|
|
pIDXS[0] = NULL;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
pIDXS[0] = m_IDXs;
|
|
|
|
Val = GetVal(m_IDXs);
|
|
|
|
}
|
|
|
|
|
|
|
|
} /* Get next ND. */
|
|
|
|
|
|
|
|
} /* Sparse matrix. */
|
|
|
|
|
|
|
|
return Val;
|
|
|
|
|
|
|
|
}; /* GetNext. */
|
2010-05-11 17:44:00 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
#define FV_NUM 10
|
|
|
|
#define FV_SIZE 10
|
|
|
|
typedef struct DefTrackFG
|
|
|
|
{
|
2012-06-12 14:46:12 +00:00
|
|
|
CvBlob blob;
|
|
|
|
// CvBlobTrackFVGen* pFVGen;
|
|
|
|
int LastFrame;
|
|
|
|
float state;
|
|
|
|
DefMat* pHist;
|
2010-05-11 17:44:00 +00:00
|
|
|
} DefTrackFG;
|
|
|
|
class CvBlobTrackAnalysisHist : public CvBlobTrackAnalysis
|
|
|
|
{
|
2012-06-12 14:46:12 +00:00
|
|
|
/*---------------- Internal functions: --------------------*/
|
2010-05-11 17:44:00 +00:00
|
|
|
private:
|
2012-06-12 14:46:12 +00:00
|
|
|
int m_BinNumParam;
|
|
|
|
int m_SmoothRadius;
|
|
|
|
const char* m_SmoothKernel;
|
|
|
|
float m_AbnormalThreshold;
|
|
|
|
int m_TrackNum;
|
|
|
|
int m_Frame;
|
|
|
|
int m_BinNum;
|
|
|
|
char m_DataFileName[1024];
|
|
|
|
int m_Dim;
|
|
|
|
int* m_Sizes;
|
|
|
|
DefMat m_HistMat;
|
|
|
|
int m_HistVolumeSaved;
|
|
|
|
int* m_pFVi;
|
|
|
|
int* m_pFViVar;
|
|
|
|
int* m_pFViVarRes;
|
|
|
|
CvBlobSeq m_TrackFGList;
|
|
|
|
//CvBlobTrackFVGen* (*m_CreateFVGen)();
|
|
|
|
CvBlobTrackFVGen* m_pFVGen;
|
|
|
|
void SaveHist()
|
|
|
|
{
|
|
|
|
if(m_DataFileName[0])
|
|
|
|
{
|
|
|
|
m_HistMat.Save(m_DataFileName);
|
|
|
|
m_HistVolumeSaved = m_HistMat.m_Volume;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
void LoadHist()
|
|
|
|
{
|
|
|
|
if(m_DataFileName[0])m_HistMat.Load(m_DataFileName);
|
|
|
|
m_HistVolumeSaved = m_HistMat.m_Volume;
|
|
|
|
}
|
|
|
|
void AllocData()
|
|
|
|
{ /* AllocData: */
|
|
|
|
m_pFVi = (int*)cvAlloc(sizeof(int)*m_Dim);
|
|
|
|
m_pFViVar = (int*)cvAlloc(sizeof(int)*m_Dim);
|
|
|
|
m_pFViVarRes = (int*)cvAlloc(sizeof(int)*m_Dim);
|
|
|
|
m_Sizes = (int*)cvAlloc(sizeof(int)*m_Dim);
|
|
|
|
|
|
|
|
{ /* Create init sparce matrix: */
|
|
|
|
int i;
|
|
|
|
for(i=0;i<m_Dim;++i)m_Sizes[i] = m_BinNum;
|
|
|
|
m_HistMat.Realloc(m_Dim,m_Sizes,SPARSE);
|
|
|
|
m_HistVolumeSaved = 0;
|
|
|
|
} /* Create init sparce matrix. */
|
|
|
|
} /* AllocData. */
|
|
|
|
|
|
|
|
void FreeData()
|
|
|
|
{ /* FreeData. */
|
|
|
|
int i;
|
|
|
|
for(i=m_TrackFGList.GetBlobNum();i>0;--i)
|
|
|
|
{
|
|
|
|
//DefTrackFG* pF = (DefTrackFG*)m_TrackFGList.GetBlob(i-1);
|
|
|
|
// pF->pFVGen->Release();
|
|
|
|
m_TrackFGList.DelBlob(i-1);
|
|
|
|
}
|
|
|
|
cvFree(&m_pFVi);
|
|
|
|
cvFree(&m_pFViVar);
|
|
|
|
cvFree(&m_pFViVarRes);
|
|
|
|
cvFree(&m_Sizes);
|
|
|
|
} /* FreeData. */
|
|
|
|
|
|
|
|
virtual void ParamUpdate()
|
|
|
|
{
|
|
|
|
if(m_BinNum != m_BinNumParam)
|
|
|
|
{
|
|
|
|
FreeData();
|
|
|
|
m_BinNum = m_BinNumParam;
|
|
|
|
AllocData();
|
|
|
|
}
|
|
|
|
}
|
2010-05-11 17:44:00 +00:00
|
|
|
public:
|
2012-06-12 14:46:12 +00:00
|
|
|
CvBlobTrackAnalysisHist(CvBlobTrackFVGen* (*createFVGen)()):m_TrackFGList(sizeof(DefTrackFG))
|
|
|
|
{
|
|
|
|
m_pFVGen = createFVGen();
|
|
|
|
m_Dim = m_pFVGen->GetFVSize();
|
|
|
|
m_Frame = 0;
|
|
|
|
m_pFVi = 0;
|
|
|
|
m_TrackNum = 0;
|
|
|
|
m_BinNum = 32;
|
|
|
|
m_DataFileName[0] = 0;
|
|
|
|
|
|
|
|
m_AbnormalThreshold = 0.02f;
|
|
|
|
AddParam("AbnormalThreshold",&m_AbnormalThreshold);
|
|
|
|
CommentParam("AbnormalThreshold","If trajectory histogram value is lesst then <AbnormalThreshold*DataBaseTrackNum> then trajectory is abnormal");
|
|
|
|
|
|
|
|
m_SmoothRadius = 1;
|
|
|
|
AddParam("SmoothRadius",&m_SmoothRadius);
|
|
|
|
CommentParam("AbnormalThreshold","Radius (in bins) for histogram smoothing");
|
|
|
|
|
|
|
|
m_SmoothKernel = "L";
|
|
|
|
AddParam("SmoothKernel",&m_SmoothKernel);
|
|
|
|
CommentParam("SmoothKernel","L - Linear, G - Gaussian");
|
|
|
|
|
|
|
|
|
|
|
|
m_BinNumParam = m_BinNum;
|
|
|
|
AddParam("BinNum",&m_BinNumParam);
|
|
|
|
CommentParam("BinNum","Number of bin for each dimention of feature vector");
|
|
|
|
|
|
|
|
AllocData();
|
|
|
|
SetModuleName("Hist");
|
|
|
|
|
|
|
|
} /* Constructor. */
|
|
|
|
|
|
|
|
~CvBlobTrackAnalysisHist()
|
|
|
|
{
|
|
|
|
SaveHist();
|
|
|
|
FreeData();
|
|
|
|
m_pFVGen->Release();
|
|
|
|
} /* Destructor. */
|
|
|
|
|
|
|
|
/*----------------- Interface: --------------------*/
|
|
|
|
virtual void AddBlob(CvBlob* pBlob)
|
|
|
|
{
|
|
|
|
DefTrackFG* pF = (DefTrackFG*)m_TrackFGList.GetBlobByID(CV_BLOB_ID(pBlob));
|
|
|
|
if(pF == NULL)
|
|
|
|
{ /* create new filter */
|
|
|
|
DefTrackFG F;
|
|
|
|
F.state = 0;
|
|
|
|
F.blob = pBlob[0];
|
|
|
|
F.LastFrame = m_Frame;
|
|
|
|
// F.pFVGen = m_CreateFVGen();
|
|
|
|
F.pHist = new DefMat(m_Dim,m_Sizes,SPARSE);
|
|
|
|
m_TrackFGList.AddBlob((CvBlob*)&F);
|
|
|
|
pF = (DefTrackFG*)m_TrackFGList.GetBlobByID(CV_BLOB_ID(pBlob));
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(pF);
|
|
|
|
pF->blob = pBlob[0];
|
|
|
|
pF->LastFrame = m_Frame;
|
|
|
|
m_pFVGen->AddBlob(pBlob);
|
|
|
|
};
|
|
|
|
virtual void Process(IplImage* pImg, IplImage* pFG)
|
|
|
|
{
|
|
|
|
m_pFVGen->Process(pImg, pFG);
|
|
|
|
int SK = m_SmoothKernel[0];
|
|
|
|
|
|
|
|
for(int i=0; i<m_pFVGen->GetFVNum(); ++i)
|
|
|
|
{
|
|
|
|
int BlobID = 0;
|
|
|
|
float* pFV = m_pFVGen->GetFV(i,&BlobID);
|
|
|
|
float* pFVMax = m_pFVGen->GetFVMax();
|
|
|
|
float* pFVMin = m_pFVGen->GetFVMin();
|
|
|
|
DefTrackFG* pF = (DefTrackFG*)m_TrackFGList.GetBlobByID(BlobID);
|
|
|
|
int HistVal = 1;
|
|
|
|
|
|
|
|
if(pFV==NULL) break;
|
|
|
|
|
|
|
|
pF->LastFrame = m_Frame;
|
|
|
|
|
|
|
|
{ /* Binarize FV: */
|
|
|
|
int j;
|
|
|
|
for(j=0; j<m_Dim; ++j)
|
|
|
|
{
|
|
|
|
int index;
|
|
|
|
float f0 = pFVMin?pFVMin[j]:0;
|
|
|
|
float f1 = pFVMax?pFVMax[j]:1;
|
|
|
|
assert(f1>f0);
|
|
|
|
index = cvRound((m_BinNum-1)*(pFV[j]-f0)/(f1-f0));
|
|
|
|
if(index<0)index=0;
|
|
|
|
if(index>=m_BinNum)index=m_BinNum-1;
|
|
|
|
m_pFVi[j] = index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
HistVal = m_HistMat.GetVal(m_pFVi);/* get bin value*/
|
|
|
|
pF->state = 0;
|
|
|
|
{ /* Calculate state: */
|
|
|
|
float T = m_HistMat.m_Max*m_AbnormalThreshold; /* calc threshold */
|
|
|
|
|
|
|
|
if(m_TrackNum>0) T = 256.0f * m_TrackNum*m_AbnormalThreshold;
|
|
|
|
if(T>0)
|
|
|
|
{
|
|
|
|
pF->state = (T - HistVal)/(T*0.2f) + 0.5f;
|
|
|
|
}
|
|
|
|
if(pF->state<0)pF->state=0;
|
|
|
|
if(pF->state>1)pF->state=1;
|
|
|
|
}
|
|
|
|
|
|
|
|
{ /* If it is a new FV then add it to trajectory histogram: */
|
|
|
|
int flag = 1;
|
|
|
|
int r = m_SmoothRadius;
|
|
|
|
|
|
|
|
// printf("BLob %3d NEW FV [", CV_BLOB_ID(pF));
|
|
|
|
// for(i=0;i<m_Dim;++i) printf("%d,", m_pFVi[i]);
|
|
|
|
// printf("]");
|
|
|
|
|
|
|
|
for(int k=0; k<m_Dim; ++k)
|
|
|
|
{
|
|
|
|
m_pFViVar[k]=-r;
|
|
|
|
}
|
|
|
|
|
|
|
|
while(flag)
|
|
|
|
{
|
|
|
|
float dist = 0;
|
|
|
|
int HistAdd = 0;
|
|
|
|
int good = 1;
|
|
|
|
for(int k=0; k<m_Dim; ++k)
|
|
|
|
{
|
|
|
|
m_pFViVarRes[k] = m_pFVi[k]+m_pFViVar[k];
|
|
|
|
if(m_pFViVarRes[k]<0) good= 0;
|
|
|
|
if(m_pFViVarRes[k]>=m_BinNum) good= 0;
|
|
|
|
dist += m_pFViVar[k]*m_pFViVar[k];
|
|
|
|
}/* Calculate next dimension. */
|
|
|
|
|
|
|
|
if(SK=='G' || SK=='g')
|
|
|
|
{
|
|
|
|
double dist2 = dist/(r*r);
|
|
|
|
HistAdd = cvRound(256*exp(-dist2)); /* Hist Add for (dist=1) = 25.6*/
|
|
|
|
}
|
|
|
|
else if(SK=='L' || SK=='l')
|
|
|
|
{
|
|
|
|
dist = (float)(sqrt(dist)/(r+1));
|
|
|
|
HistAdd = cvRound(256*(1-dist));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
HistAdd = 255; /* Flat smoothing. */
|
|
|
|
}
|
|
|
|
|
|
|
|
if(good && HistAdd>0)
|
|
|
|
{ /* Update histogram: */
|
|
|
|
assert(pF->pHist);
|
|
|
|
pF->pHist->SetMax(m_pFViVarRes, HistAdd);
|
|
|
|
} /* Update histogram. */
|
|
|
|
|
|
|
|
int idx = 0;
|
|
|
|
for( ; idx<m_Dim; ++idx)
|
|
|
|
{ /* Next config: */
|
|
|
|
if((m_pFViVar[idx]++) < r)
|
|
|
|
break;
|
|
|
|
m_pFViVar[idx] = -r;
|
|
|
|
} /* Increase next dimension variable. */
|
|
|
|
if(idx==m_Dim)break;
|
|
|
|
} /* Next variation. */
|
|
|
|
} /* If new FV. */
|
|
|
|
} /* Next FV. */
|
|
|
|
|
|
|
|
{ /* Check all blobs on list: */
|
|
|
|
int i;
|
|
|
|
for(i=m_TrackFGList.GetBlobNum(); i>0; --i)
|
|
|
|
{ /* Add histogram and delete blob from list: */
|
|
|
|
DefTrackFG* pF = (DefTrackFG*)m_TrackFGList.GetBlob(i-1);
|
|
|
|
if(pF->LastFrame+3 < m_Frame && pF->pHist)
|
|
|
|
{
|
|
|
|
m_HistMat.Add(pF->pHist);
|
|
|
|
delete pF->pHist;
|
|
|
|
m_TrackNum++;
|
|
|
|
m_TrackFGList.DelBlob(i-1);
|
|
|
|
}
|
|
|
|
}/* next blob */
|
|
|
|
}
|
|
|
|
|
|
|
|
m_Frame++;
|
|
|
|
|
|
|
|
if(m_Wnd)
|
|
|
|
{ /* Debug output: */
|
|
|
|
int* idxs = NULL;
|
|
|
|
int Val = 0;
|
|
|
|
IplImage* pI = cvCloneImage(pImg);
|
|
|
|
|
|
|
|
cvZero(pI);
|
|
|
|
|
|
|
|
for(Val = m_HistMat.GetNext(&idxs,1); idxs; Val=m_HistMat.GetNext(&idxs,0))
|
|
|
|
{ /* Draw all elements: */
|
|
|
|
if(!idxs) break;
|
|
|
|
if(Val == 0) continue;
|
|
|
|
|
|
|
|
float vf = (float)Val/(m_HistMat.m_Max?m_HistMat.m_Max:1);
|
|
|
|
int x = cvRound((float)(pI->width-1)*(float)idxs[0] / (float)m_BinNum);
|
|
|
|
int y = cvRound((float)(pI->height-1)*(float)idxs[1] / (float)m_BinNum);
|
|
|
|
|
|
|
|
cvCircle(pI, cvPoint(x,y), cvRound(vf*pI->height/(m_BinNum*2)),CV_RGB(255,0,0),CV_FILLED);
|
|
|
|
if(m_Dim > 3)
|
|
|
|
{
|
|
|
|
int dx = -2*(idxs[2]-m_BinNum/2);
|
|
|
|
int dy = -2*(idxs[3]-m_BinNum/2);
|
|
|
|
cvLine(pI,cvPoint(x,y),cvPoint(x+dx,y+dy),CV_RGB(0,cvRound(vf*255),1));
|
|
|
|
}
|
|
|
|
if( m_Dim==4 &&
|
|
|
|
m_pFVGen->GetFVMax()[0]==m_pFVGen->GetFVMax()[2] &&
|
|
|
|
m_pFVGen->GetFVMax()[1]==m_pFVGen->GetFVMax()[3])
|
|
|
|
{
|
|
|
|
int x1 = cvRound((float)(pI->width-1)*(float)idxs[2] / (float)m_BinNum);
|
|
|
|
int y1 = cvRound((float)(pI->height-1)*(float)idxs[3] / (float)m_BinNum);
|
|
|
|
cvCircle(pI, cvPoint(x1,y1), cvRound(vf*pI->height/(m_BinNum*2)),CV_RGB(0,0,255),CV_FILLED);
|
|
|
|
}
|
|
|
|
} /* Draw all elements. */
|
|
|
|
|
|
|
|
for(int i=m_TrackFGList.GetBlobNum();i>0;--i)
|
|
|
|
{
|
|
|
|
DefTrackFG* pF = (DefTrackFG*)m_TrackFGList.GetBlob(i-1);
|
|
|
|
DefMat* pHist = pF?pF->pHist:NULL;
|
|
|
|
|
|
|
|
if(pHist==NULL) continue;
|
|
|
|
|
|
|
|
for(Val = pHist->GetNext(&idxs,1);idxs;Val=pHist->GetNext(&idxs,0))
|
|
|
|
{ /* Draw all elements: */
|
|
|
|
float vf;
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
if(!idxs) break;
|
|
|
|
if(Val == 0) continue;
|
|
|
|
|
|
|
|
vf = (float)Val/(pHist->m_Max?pHist->m_Max:1);
|
|
|
|
x = cvRound((float)(pI->width-1)*(float)idxs[0] / (float)m_BinNum);
|
|
|
|
y = cvRound((float)(pI->height-1)*(float)idxs[1] / (float)m_BinNum);
|
|
|
|
|
|
|
|
cvCircle(pI, cvPoint(x,y), cvRound(2*vf),CV_RGB(0,0,cvRound(255*vf)),CV_FILLED);
|
|
|
|
if(m_Dim > 3)
|
|
|
|
{
|
|
|
|
int dx = -2*(idxs[2]-m_BinNum/2);
|
|
|
|
int dy = -2*(idxs[3]-m_BinNum/2);
|
|
|
|
cvLine(pI,cvPoint(x,y),cvPoint(x+dx,y+dy),CV_RGB(0,0,255));
|
|
|
|
}
|
|
|
|
if( m_Dim==4 &&
|
|
|
|
m_pFVGen->GetFVMax()[0]==m_pFVGen->GetFVMax()[2] &&
|
|
|
|
m_pFVGen->GetFVMax()[1]==m_pFVGen->GetFVMax()[3])
|
|
|
|
{ /* if SS feature vector */
|
|
|
|
int x1 = cvRound((float)(pI->width-1)*(float)idxs[2] / (float)m_BinNum);
|
|
|
|
int y1 = cvRound((float)(pI->height-1)*(float)idxs[3] / (float)m_BinNum);
|
|
|
|
cvCircle(pI, cvPoint(x1,y1), cvRound(vf*pI->height/(m_BinNum*2)),CV_RGB(0,0,255),CV_FILLED);
|
|
|
|
}
|
|
|
|
} /* Draw all elements. */
|
|
|
|
} /* Next track. */
|
|
|
|
|
|
|
|
//cvNamedWindow("Hist",0);
|
|
|
|
//cvShowImage("Hist", pI);
|
|
|
|
cvReleaseImage(&pI);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
float GetState(int BlobID)
|
|
|
|
{
|
|
|
|
DefTrackFG* pF = (DefTrackFG*)m_TrackFGList.GetBlobByID(BlobID);
|
|
|
|
return pF?pF->state:0.0f;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Return 0 if trajectory is normal;
|
2010-05-11 17:44:00 +00:00
|
|
|
rreturn >0 if trajectory abnormal. */
|
2012-06-12 14:46:12 +00:00
|
|
|
virtual const char* GetStateDesc(int BlobID)
|
|
|
|
{
|
|
|
|
if(GetState(BlobID)>0.5) return "abnormal";
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void SetFileName(char* DataBaseName)
|
|
|
|
{
|
|
|
|
if(m_HistMat.m_Volume!=m_HistVolumeSaved)SaveHist();
|
|
|
|
m_DataFileName[0] = m_DataFileName[1000] = 0;
|
|
|
|
|
|
|
|
if(DataBaseName)
|
|
|
|
{
|
|
|
|
strncpy(m_DataFileName,DataBaseName,1000);
|
|
|
|
strcat(m_DataFileName, ".yml");
|
|
|
|
}
|
|
|
|
LoadHist();
|
|
|
|
};
|
|
|
|
|
|
|
|
virtual void SaveState(CvFileStorage* fs)
|
|
|
|
{
|
|
|
|
int b, bN = m_TrackFGList.GetBlobNum();
|
|
|
|
cvWriteInt(fs,"BlobNum",bN);
|
|
|
|
cvStartWriteStruct(fs,"BlobList",CV_NODE_SEQ);
|
|
|
|
|
|
|
|
for(b=0; b<bN; ++b)
|
|
|
|
{
|
|
|
|
DefTrackFG* pF = (DefTrackFG*)m_TrackFGList.GetBlob(b);
|
|
|
|
cvStartWriteStruct(fs,NULL,CV_NODE_MAP);
|
|
|
|
cvWriteStruct(fs,"Blob", &(pF->blob), "ffffi");
|
|
|
|
cvWriteInt(fs,"LastFrame",pF->LastFrame);
|
|
|
|
cvWriteReal(fs,"State",pF->state);
|
|
|
|
pF->pHist->Save(fs, "Hist");
|
|
|
|
cvEndWriteStruct(fs);
|
|
|
|
}
|
|
|
|
cvEndWriteStruct(fs);
|
|
|
|
m_HistMat.Save(fs, "Hist");
|
|
|
|
};
|
|
|
|
|
|
|
|
virtual void LoadState(CvFileStorage* fs, CvFileNode* node)
|
|
|
|
{
|
|
|
|
CvFileNode* pBLN = cvGetFileNodeByName(fs,node,"BlobList");
|
|
|
|
|
|
|
|
if(pBLN && CV_NODE_IS_SEQ(pBLN->tag))
|
|
|
|
{
|
|
|
|
int b, bN = pBLN->data.seq->total;
|
|
|
|
for(b=0; b<bN; ++b)
|
|
|
|
{
|
|
|
|
DefTrackFG* pF = NULL;
|
|
|
|
CvBlob Blob;
|
|
|
|
CvFileNode* pBN = (CvFileNode*)cvGetSeqElem(pBLN->data.seq,b);
|
|
|
|
|
|
|
|
assert(pBN);
|
|
|
|
cvReadStructByName(fs, pBN, "Blob", &Blob, "ffffi");
|
|
|
|
AddBlob(&Blob);
|
|
|
|
pF = (DefTrackFG*)m_TrackFGList.GetBlobByID(Blob.ID);
|
|
|
|
if(pF==NULL) continue;
|
|
|
|
assert(pF);
|
|
|
|
pF->state = (float)cvReadIntByName(fs,pBN,"State",cvRound(pF->state));
|
|
|
|
assert(pF->pHist);
|
|
|
|
pF->pHist->Load(fs,pBN,"Hist");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
m_HistMat.Load(fs, node, "Hist");
|
|
|
|
}; /* LoadState */
|
|
|
|
|
|
|
|
|
|
|
|
virtual void Release(){ delete this; };
|
2010-05-11 17:44:00 +00:00
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistP()
|
|
|
|
{return (CvBlobTrackAnalysis*) new CvBlobTrackAnalysisHist(cvCreateFVGenP);}
|
|
|
|
|
|
|
|
CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistPV()
|
|
|
|
{return (CvBlobTrackAnalysis*) new CvBlobTrackAnalysisHist(cvCreateFVGenPV);}
|
|
|
|
|
|
|
|
CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistPVS()
|
|
|
|
{return (CvBlobTrackAnalysis*) new CvBlobTrackAnalysisHist(cvCreateFVGenPVS);}
|
|
|
|
|
|
|
|
CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistSS()
|
|
|
|
{return (CvBlobTrackAnalysis*) new CvBlobTrackAnalysisHist(cvCreateFVGenSS);}
|
|
|
|
|
|
|
|
typedef struct DefTrackSVM
|
|
|
|
{
|
2012-06-12 14:46:12 +00:00
|
|
|
CvBlob blob;
|
|
|
|
// CvBlobTrackFVGen* pFVGen;
|
|
|
|
int LastFrame;
|
|
|
|
float state;
|
|
|
|
CvBlob BlobLast;
|
|
|
|
CvSeq* pFVSeq;
|
|
|
|
CvMemStorage* pMem;
|
2010-05-11 17:44:00 +00:00
|
|
|
} DefTrackSVM;
|
|
|
|
|
|
|
|
class CvBlobTrackAnalysisSVM : public CvBlobTrackAnalysis
|
|
|
|
{
|
2012-06-12 14:46:12 +00:00
|
|
|
/*---------------- Internal functions: --------------------*/
|
2010-05-11 17:44:00 +00:00
|
|
|
private:
|
2012-06-12 14:46:12 +00:00
|
|
|
CvMemStorage* m_pMem;
|
|
|
|
int m_TrackNum;
|
|
|
|
int m_Frame;
|
|
|
|
char m_DataFileName[1024];
|
|
|
|
int m_Dim;
|
|
|
|
float* m_pFV;
|
|
|
|
//CvStatModel* m_pStatModel;
|
|
|
|
void* m_pStatModel;
|
|
|
|
CvBlobSeq m_Tracks;
|
|
|
|
CvMat* m_pTrainData;
|
|
|
|
int m_LastTrainDataSize;
|
|
|
|
// CvBlobTrackFVGen* (*m_CreateFVGen)();
|
|
|
|
CvBlobTrackFVGen* m_pFVGen;
|
|
|
|
float m_NU;
|
|
|
|
float m_RBFWidth;
|
|
|
|
IplImage* m_pStatImg; /* for debug purpose */
|
|
|
|
CvSize m_ImgSize;
|
|
|
|
void RetrainStatModel()
|
|
|
|
{
|
|
|
|
///////// !!!!! TODO !!!!! Repair /////////////
|
2010-05-11 17:44:00 +00:00
|
|
|
#if 0
|
2012-06-12 14:46:12 +00:00
|
|
|
float nu = 0;
|
|
|
|
CvSVMModelParams SVMParams = {0};
|
|
|
|
CvStatModel* pM = NULL;
|
|
|
|
|
|
|
|
|
|
|
|
memset(&SVMParams,0,sizeof(SVMParams));
|
|
|
|
SVMParams.svm_type = CV_SVM_ONE_CLASS;
|
|
|
|
SVMParams.kernel_type = CV_SVM_RBF;
|
|
|
|
SVMParams.gamma = 2.0/(m_RBFWidth*m_RBFWidth);
|
|
|
|
SVMParams.nu = m_NU;
|
|
|
|
SVMParams.degree = 3;
|
|
|
|
SVMParams.criteria = cvTermCriteria(CV_TERMCRIT_EPS, 100, 1e-3 );
|
|
|
|
SVMParams.C = 1;
|
|
|
|
SVMParams.p = 0.1;
|
|
|
|
|
|
|
|
|
|
|
|
if(m_pTrainData == NULL) return;
|
|
|
|
{
|
|
|
|
int64 TickCount = cvGetTickCount();
|
|
|
|
printf("Frame: %d\n Retrain SVM\nData Size = %d\n",m_Frame, m_pTrainData->rows);
|
|
|
|
pM = cvTrainSVM( m_pTrainData,CV_ROW_SAMPLE, NULL, (CvStatModelParams*)&SVMParams, NULL, NULL);
|
|
|
|
TickCount = cvGetTickCount() - TickCount ;
|
|
|
|
printf("SV Count = %d\n",((CvSVMModel*)pM)->sv_total);
|
|
|
|
printf("Processing Time = %.1f(ms)\n",TickCount/(1000*cvGetTickFrequency()));
|
|
|
|
|
|
|
|
}
|
|
|
|
if(pM==NULL) return;
|
|
|
|
if(m_pStatModel) cvReleaseStatModel(&m_pStatModel);
|
|
|
|
m_pStatModel = pM;
|
|
|
|
|
|
|
|
if(m_pTrainData && m_Wnd)
|
|
|
|
{
|
|
|
|
float MaxVal = 0;
|
|
|
|
IplImage* pW = cvCreateImage(m_ImgSize,IPL_DEPTH_32F,1);
|
|
|
|
IplImage* pI = cvCreateImage(m_ImgSize,IPL_DEPTH_8U,1);
|
|
|
|
float* pFVVar = m_pFVGen->GetFVVar();
|
|
|
|
int i;
|
|
|
|
cvZero(pW);
|
|
|
|
|
|
|
|
for(i=0; i<m_pTrainData->rows; ++i)
|
|
|
|
{ /* Draw all elements: */
|
|
|
|
float* pFV = (float*)(m_pTrainData->data.ptr + m_pTrainData->step*i);
|
|
|
|
int x = cvRound(pFV[0]*pFVVar[0]);
|
|
|
|
int y = cvRound(pFV[1]*pFVVar[1]);
|
|
|
|
float r;
|
|
|
|
|
|
|
|
if(x<0)x=0;
|
|
|
|
if(x>=pW->width)x=pW->width-1;
|
|
|
|
if(y<0)y=0;
|
|
|
|
if(y>=pW->height)y=pW->height-1;
|
|
|
|
|
|
|
|
r = ((float*)(pW->imageData + y*pW->widthStep))[x];
|
|
|
|
r++;
|
|
|
|
((float*)(pW->imageData + y*pW->widthStep))[x] = r;
|
|
|
|
|
|
|
|
if(r>MaxVal)MaxVal=r;
|
|
|
|
} /* Next point. */
|
|
|
|
|
|
|
|
if(MaxVal>0)cvConvertScale(pW,pI,255/MaxVal,0);
|
|
|
|
cvNamedWindow("SVMData",0);
|
|
|
|
cvShowImage("SVMData",pI);
|
|
|
|
cvSaveImage("SVMData.bmp",pI);
|
|
|
|
cvReleaseImage(&pW);
|
|
|
|
cvReleaseImage(&pI);
|
|
|
|
} /* Prepare for debug. */
|
|
|
|
|
|
|
|
if(m_pStatModel && m_Wnd && m_Dim == 2)
|
|
|
|
{
|
|
|
|
float* pFVVar = m_pFVGen->GetFVVar();
|
|
|
|
int x,y;
|
|
|
|
if(m_pStatImg==NULL)
|
|
|
|
{
|
|
|
|
m_pStatImg = cvCreateImage(m_ImgSize,IPL_DEPTH_8U,1);
|
|
|
|
}
|
|
|
|
cvZero(m_pStatImg);
|
|
|
|
|
|
|
|
for(y=0; y<m_pStatImg->height; y+=1) for(x=0; x<m_pStatImg->width; x+=1)
|
|
|
|
{ /* Draw all elements: */
|
|
|
|
float res;
|
|
|
|
uchar* pData = (uchar*)m_pStatImg->imageData + x + y*m_pStatImg->widthStep;
|
|
|
|
CvMat FVmat;
|
|
|
|
float xy[2] = {x/pFVVar[0],y/pFVVar[1]};
|
|
|
|
cvInitMatHeader( &FVmat, 1, 2, CV_32F, xy );
|
|
|
|
res = cvStatModelPredict( m_pStatModel, &FVmat, NULL );
|
|
|
|
pData[0]=((res>0.5)?255:0);
|
|
|
|
} /* Next point. */
|
|
|
|
|
|
|
|
cvNamedWindow("SVMMask",0);
|
|
|
|
cvShowImage("SVMMask",m_pStatImg);
|
|
|
|
cvSaveImage("SVMMask.bmp",m_pStatImg);
|
|
|
|
} /* Prepare for debug. */
|
2010-05-11 17:44:00 +00:00
|
|
|
#endif
|
2012-06-12 14:46:12 +00:00
|
|
|
};
|
|
|
|
void SaveStatModel()
|
|
|
|
{
|
|
|
|
if(m_DataFileName[0])
|
|
|
|
{
|
|
|
|
if(m_pTrainData)cvSave(m_DataFileName, m_pTrainData);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
void LoadStatModel()
|
|
|
|
{
|
|
|
|
if(m_DataFileName[0])
|
|
|
|
{
|
|
|
|
CvMat* pTrainData = (CvMat*)cvLoad(m_DataFileName);
|
|
|
|
if(CV_IS_MAT(pTrainData) && pTrainData->width == m_Dim)
|
|
|
|
{
|
|
|
|
if(m_pTrainData) cvReleaseMat(&m_pTrainData);
|
|
|
|
m_pTrainData = pTrainData;
|
|
|
|
RetrainStatModel();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2010-05-11 17:44:00 +00:00
|
|
|
public:
|
2012-06-12 14:46:12 +00:00
|
|
|
CvBlobTrackAnalysisSVM(CvBlobTrackFVGen* (*createFVGen)()):m_Tracks(sizeof(DefTrackSVM))
|
|
|
|
{
|
|
|
|
m_pFVGen = createFVGen();
|
|
|
|
m_Dim = m_pFVGen->GetFVSize();
|
|
|
|
m_pFV = (float*)cvAlloc(sizeof(float)*m_Dim);
|
|
|
|
m_Frame = 0;
|
|
|
|
m_TrackNum = 0;
|
|
|
|
m_pTrainData = NULL;
|
|
|
|
m_pStatModel = NULL;
|
|
|
|
m_DataFileName[0] = 0;
|
|
|
|
m_pStatImg = NULL;
|
|
|
|
m_LastTrainDataSize = 0;
|
|
|
|
|
|
|
|
m_NU = 0.2f;
|
|
|
|
AddParam("Nu",&m_NU);
|
|
|
|
CommentParam("Nu","Parameters that tunes SVM border elastic");
|
|
|
|
|
|
|
|
m_RBFWidth = 1;
|
|
|
|
AddParam("RBFWidth",&m_RBFWidth);
|
|
|
|
CommentParam("RBFWidth","Parameters that tunes RBF kernel function width.");
|
|
|
|
|
|
|
|
SetModuleName("SVM");
|
|
|
|
|
|
|
|
} /* Constructor. */
|
|
|
|
|
|
|
|
~CvBlobTrackAnalysisSVM()
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
SaveStatModel();
|
|
|
|
for(i=m_Tracks.GetBlobNum();i>0;--i)
|
|
|
|
{
|
|
|
|
DefTrackSVM* pF = (DefTrackSVM*)m_Tracks.GetBlob(i-1);
|
|
|
|
if(pF->pMem) cvReleaseMemStorage(&pF->pMem);
|
|
|
|
//pF->pFVGen->Release();
|
|
|
|
}
|
|
|
|
if(m_pStatImg)cvReleaseImage(&m_pStatImg);
|
|
|
|
cvFree(&m_pFV);
|
|
|
|
} /* Destructor. */
|
|
|
|
|
|
|
|
/*----------------- Interface: --------------------*/
|
|
|
|
virtual void AddBlob(CvBlob* pBlob)
|
|
|
|
{
|
|
|
|
DefTrackSVM* pF = (DefTrackSVM*)m_Tracks.GetBlobByID(CV_BLOB_ID(pBlob));
|
|
|
|
|
|
|
|
m_pFVGen->AddBlob(pBlob);
|
|
|
|
|
|
|
|
if(pF == NULL)
|
|
|
|
{ /* Create new record: */
|
|
|
|
DefTrackSVM F;
|
|
|
|
F.state = 0;
|
|
|
|
F.blob = pBlob[0];
|
|
|
|
F.LastFrame = m_Frame;
|
|
|
|
//F.pFVGen = m_CreateFVGen();
|
|
|
|
F.pMem = cvCreateMemStorage();
|
|
|
|
F.pFVSeq = cvCreateSeq(0,sizeof(CvSeq),sizeof(float)*m_Dim,F.pMem);
|
|
|
|
|
|
|
|
F.BlobLast.x = -1;
|
|
|
|
F.BlobLast.y = -1;
|
|
|
|
F.BlobLast.w = -1;
|
|
|
|
F.BlobLast.h = -1;
|
|
|
|
m_Tracks.AddBlob((CvBlob*)&F);
|
|
|
|
pF = (DefTrackSVM*)m_Tracks.GetBlobByID(CV_BLOB_ID(pBlob));
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(pF);
|
|
|
|
pF->blob = pBlob[0];
|
|
|
|
pF->LastFrame = m_Frame;
|
|
|
|
};
|
|
|
|
|
|
|
|
virtual void Process(IplImage* pImg, IplImage* pFG)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
float* pFVVar = m_pFVGen->GetFVVar();
|
|
|
|
|
|
|
|
m_pFVGen->Process(pImg, pFG);
|
|
|
|
m_ImgSize = cvSize(pImg->width,pImg->height);
|
|
|
|
|
|
|
|
for(i=m_pFVGen->GetFVNum(); i>0; --i)
|
|
|
|
{
|
|
|
|
int BlobID = 0;
|
|
|
|
float* pFV = m_pFVGen->GetFV(i,&BlobID);
|
|
|
|
DefTrackSVM* pF = (DefTrackSVM*)m_Tracks.GetBlobByID(BlobID);
|
|
|
|
|
|
|
|
if(pF && pFV)
|
|
|
|
{ /* Process: */
|
|
|
|
float dx,dy;
|
|
|
|
CvMat FVmat;
|
|
|
|
|
|
|
|
pF->state = 0;
|
|
|
|
|
|
|
|
if(m_pStatModel)
|
|
|
|
{
|
|
|
|
int j;
|
|
|
|
for(j=0; j<m_Dim; ++j)
|
|
|
|
{
|
|
|
|
m_pFV[j] = pFV[j]/pFVVar[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
cvInitMatHeader( &FVmat, 1, m_Dim, CV_32F, m_pFV );
|
|
|
|
//pF->state = cvStatModelPredict( m_pStatModel, &FVmat, NULL )<0.5;
|
|
|
|
pF->state = 1.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
dx = (pF->blob.x - pF->BlobLast.x);
|
|
|
|
dy = (pF->blob.y - pF->BlobLast.y);
|
|
|
|
|
|
|
|
if(pF->BlobLast.x<0 || (dx*dx+dy*dy) >= 2*2)
|
|
|
|
{ /* Add feature vector to train data base: */
|
|
|
|
pF->BlobLast = pF->blob;
|
|
|
|
cvSeqPush(pF->pFVSeq,pFV);
|
|
|
|
}
|
|
|
|
} /* Process one blob. */
|
|
|
|
} /* Next FV. */
|
|
|
|
|
|
|
|
for(i=m_Tracks.GetBlobNum(); i>0; --i)
|
|
|
|
{ /* Check each blob record: */
|
|
|
|
DefTrackSVM* pF = (DefTrackSVM*)m_Tracks.GetBlob(i-1);
|
|
|
|
|
|
|
|
if(pF->LastFrame+3 < m_Frame )
|
|
|
|
{ /* Retrain stat model and delete blob filter: */
|
|
|
|
int mult = 1+m_Dim;
|
|
|
|
int old_height = m_pTrainData?m_pTrainData->height:0;
|
|
|
|
int height = old_height + pF->pFVSeq->total*mult;
|
|
|
|
CvMat* pTrainData = cvCreateMat(height, m_Dim, CV_32F);
|
|
|
|
int j;
|
|
|
|
if(m_pTrainData && pTrainData)
|
|
|
|
{ /* Create new train data matrix: */
|
|
|
|
int h = pTrainData->height;
|
|
|
|
pTrainData->height = MIN(pTrainData->height, m_pTrainData->height);
|
|
|
|
cvCopy(m_pTrainData,pTrainData);
|
|
|
|
pTrainData->height = h;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(j=0; j<pF->pFVSeq->total; ++j)
|
|
|
|
{ /* Copy new data to train data: */
|
|
|
|
float* pFVvar = m_pFVGen->GetFVVar();
|
|
|
|
float* pFV = (float*)cvGetSeqElem(pF->pFVSeq,j);
|
|
|
|
int k;
|
|
|
|
|
|
|
|
for(k=0; k<mult; ++k)
|
|
|
|
{
|
|
|
|
int t;
|
|
|
|
float* pTD = (float*)CV_MAT_ELEM_PTR( pTrainData[0], old_height+j*mult+k, 0);
|
|
|
|
memcpy(pTD,pFV,sizeof(float)*m_Dim);
|
|
|
|
|
|
|
|
if(pFVvar)for(t=0;t<m_Dim;++t)
|
|
|
|
{ /* Scale FV: */
|
|
|
|
pTD[t] /= pFVvar[t];
|
|
|
|
}
|
|
|
|
|
|
|
|
if(k>0)
|
|
|
|
{ /* Variate: */
|
|
|
|
for(t=0; t<m_Dim; ++t)
|
|
|
|
{
|
|
|
|
pTD[t] += m_RBFWidth*0.5f*(1-2.0f*rand()/(float)RAND_MAX);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} /* Next new datum. */
|
|
|
|
|
|
|
|
if(m_pTrainData) cvReleaseMat(&m_pTrainData);
|
|
|
|
m_pTrainData = pTrainData;
|
|
|
|
|
|
|
|
/* delete track record */
|
|
|
|
cvReleaseMemStorage(&pF->pMem);
|
|
|
|
m_TrackNum++;
|
|
|
|
m_Tracks.DelBlob(i-1);
|
|
|
|
|
|
|
|
} /* End delete. */
|
|
|
|
} /* Next track. */
|
|
|
|
|
|
|
|
/* Retrain data each 1 minute if new data exist: */
|
|
|
|
if(m_Frame%(25*60) == 0 && m_pTrainData && m_pTrainData->rows > m_LastTrainDataSize)
|
|
|
|
{
|
|
|
|
RetrainStatModel();
|
|
|
|
}
|
|
|
|
|
|
|
|
m_Frame++;
|
|
|
|
|
|
|
|
if(m_Wnd && m_Dim==2)
|
|
|
|
{ /* Debug output: */
|
|
|
|
int x,y;
|
|
|
|
IplImage* pI = cvCloneImage(pImg);
|
|
|
|
|
|
|
|
if(m_pStatModel && m_pStatImg)
|
|
|
|
|
|
|
|
for(y=0; y<pI->height; y+=2)
|
|
|
|
{
|
|
|
|
uchar* pStatData = (uchar*)m_pStatImg->imageData + y*m_pStatImg->widthStep;
|
|
|
|
uchar* pData = (uchar*)pI->imageData + y*pI->widthStep;
|
|
|
|
|
|
|
|
for(x=0;x<pI->width;x+=2)
|
|
|
|
{ /* Draw all elements: */
|
|
|
|
int d = pStatData[x];
|
|
|
|
d = (d<<8) | (d^0xff);
|
|
|
|
*(ushort*)(pData + x*3) = (ushort)d;
|
|
|
|
}
|
|
|
|
} /* Next line. */
|
|
|
|
|
|
|
|
//cvNamedWindow("SVMMap",0);
|
|
|
|
//cvShowImage("SVMMap", pI);
|
|
|
|
cvReleaseImage(&pI);
|
|
|
|
} /* Debug output. */
|
|
|
|
};
|
|
|
|
float GetState(int BlobID)
|
|
|
|
{
|
|
|
|
DefTrackSVM* pF = (DefTrackSVM*)m_Tracks.GetBlobByID(BlobID);
|
|
|
|
return pF?pF->state:0.0f;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Return 0 if trajectory is normal;
|
2010-05-11 17:44:00 +00:00
|
|
|
return >0 if trajectory abnormal. */
|
2012-06-12 14:46:12 +00:00
|
|
|
virtual const char* GetStateDesc(int BlobID)
|
|
|
|
{
|
|
|
|
if(GetState(BlobID)>0.5) return "abnormal";
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void SetFileName(char* DataBaseName)
|
|
|
|
{
|
|
|
|
if(m_pTrainData)SaveStatModel();
|
|
|
|
m_DataFileName[0] = m_DataFileName[1000] = 0;
|
|
|
|
if(DataBaseName)
|
|
|
|
{
|
|
|
|
strncpy(m_DataFileName,DataBaseName,1000);
|
|
|
|
strcat(m_DataFileName, ".yml");
|
|
|
|
}
|
|
|
|
LoadStatModel();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
virtual void Release(){ delete this; };
|
2010-05-11 17:44:00 +00:00
|
|
|
|
|
|
|
}; /* CvBlobTrackAnalysisSVM. */
|
|
|
|
|
2012-06-07 17:21:29 +00:00
|
|
|
#if 0
|
2010-05-11 17:44:00 +00:00
|
|
|
CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisSVMP()
|
|
|
|
{return (CvBlobTrackAnalysis*) new CvBlobTrackAnalysisSVM(cvCreateFVGenP);}
|
|
|
|
|
|
|
|
CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisSVMPV()
|
|
|
|
{return (CvBlobTrackAnalysis*) new CvBlobTrackAnalysisSVM(cvCreateFVGenPV);}
|
|
|
|
|
|
|
|
CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisSVMPVS()
|
|
|
|
{return (CvBlobTrackAnalysis*) new CvBlobTrackAnalysisSVM(cvCreateFVGenPVS);}
|
|
|
|
|
|
|
|
CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisSVMSS()
|
|
|
|
{return (CvBlobTrackAnalysis*) new CvBlobTrackAnalysisSVM(cvCreateFVGenSS);}
|
2012-06-07 17:21:29 +00:00
|
|
|
#endif
|