2011-09-14 06:23:46 +00:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "internal_shared.hpp"
|
|
|
|
#include "opencv2/gpu/device/limits.hpp"
|
|
|
|
#include "opencv2/gpu/device/vec_distance.hpp"
|
|
|
|
|
|
|
|
using namespace cv::gpu;
|
|
|
|
using namespace cv::gpu::device;
|
|
|
|
|
2011-09-26 11:18:30 +00:00
|
|
|
namespace cv { namespace gpu { namespace bf_knnmatch
|
2011-09-14 06:23:46 +00:00
|
|
|
{
|
|
|
|
template <typename VecDiff, typename Dist, typename T, typename Mask>
|
|
|
|
__device__ void distanceCalcLoop(const PtrStep_<T>& query, const DevMem2D_<T>& train, const Mask& m, int queryIdx,
|
|
|
|
typename Dist::result_type& distMin1, typename Dist::result_type& distMin2, int& bestTrainIdx1, int& bestTrainIdx2,
|
|
|
|
typename Dist::result_type* smem)
|
|
|
|
{
|
|
|
|
const VecDiff vecDiff(query.ptr(queryIdx), train.cols, (typename Dist::value_type*)smem, threadIdx.y * blockDim.x + threadIdx.x, threadIdx.x);
|
|
|
|
|
|
|
|
typename Dist::result_type* sdiffRow = smem + blockDim.x * threadIdx.y;
|
|
|
|
|
|
|
|
distMin1 = numeric_limits<typename Dist::result_type>::max();
|
|
|
|
distMin2 = numeric_limits<typename Dist::result_type>::max();
|
|
|
|
|
|
|
|
bestTrainIdx1 = -1;
|
|
|
|
bestTrainIdx2 = -1;
|
|
|
|
|
|
|
|
for (int trainIdx = threadIdx.y; trainIdx < train.rows; trainIdx += blockDim.y)
|
|
|
|
{
|
|
|
|
if (m(queryIdx, trainIdx))
|
|
|
|
{
|
|
|
|
Dist dist;
|
|
|
|
|
|
|
|
const T* trainRow = train.ptr(trainIdx);
|
|
|
|
|
|
|
|
vecDiff.calc(trainRow, train.cols, dist, sdiffRow, threadIdx.x);
|
|
|
|
|
|
|
|
const typename Dist::result_type val = dist;
|
|
|
|
|
|
|
|
if (val < distMin1)
|
|
|
|
{
|
|
|
|
distMin1 = val;
|
|
|
|
bestTrainIdx1 = trainIdx;
|
|
|
|
}
|
|
|
|
else if (val < distMin2)
|
|
|
|
{
|
|
|
|
distMin2 = val;
|
|
|
|
bestTrainIdx2 = trainIdx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename VecDiff, typename Dist, typename T, typename Mask>
|
|
|
|
__global__ void knnMatch2(const PtrStep_<T> query, const DevMem2D_<T> train, const Mask m, int2* trainIdx, float2* distance)
|
|
|
|
{
|
|
|
|
typedef typename Dist::result_type result_type;
|
|
|
|
typedef typename Dist::value_type value_type;
|
|
|
|
|
|
|
|
__shared__ result_type smem[BLOCK_DIM_X * BLOCK_DIM_Y];
|
|
|
|
|
|
|
|
const int queryIdx = blockIdx.x;
|
|
|
|
|
|
|
|
result_type distMin1;
|
|
|
|
result_type distMin2;
|
|
|
|
|
|
|
|
int bestTrainIdx1;
|
|
|
|
int bestTrainIdx2;
|
|
|
|
|
|
|
|
distanceCalcLoop<VecDiff, Dist>(query, train, m, queryIdx, distMin1, distMin2, bestTrainIdx1, bestTrainIdx2, smem);
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
volatile result_type* sdistMinRow = smem;
|
|
|
|
volatile int* sbestTrainIdxRow = (int*)(sdistMinRow + 2 * BLOCK_DIM_Y);
|
|
|
|
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
{
|
|
|
|
sdistMinRow[threadIdx.y] = distMin1;
|
|
|
|
sdistMinRow[threadIdx.y + BLOCK_DIM_Y] = distMin2;
|
|
|
|
|
|
|
|
sbestTrainIdxRow[threadIdx.y] = bestTrainIdx1;
|
|
|
|
sbestTrainIdxRow[threadIdx.y + BLOCK_DIM_Y] = bestTrainIdx2;
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (threadIdx.x == 0 && threadIdx.y == 0)
|
|
|
|
{
|
|
|
|
distMin1 = numeric_limits<result_type>::max();
|
|
|
|
distMin2 = numeric_limits<result_type>::max();
|
|
|
|
|
|
|
|
bestTrainIdx1 = -1;
|
|
|
|
bestTrainIdx2 = -1;
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int i = 0; i < BLOCK_DIM_Y; ++i)
|
|
|
|
{
|
|
|
|
result_type val = sdistMinRow[i];
|
|
|
|
|
|
|
|
if (val < distMin1)
|
|
|
|
{
|
|
|
|
distMin1 = val;
|
|
|
|
bestTrainIdx1 = sbestTrainIdxRow[i];
|
|
|
|
}
|
|
|
|
else if (val < distMin2)
|
|
|
|
{
|
|
|
|
distMin2 = val;
|
|
|
|
bestTrainIdx2 = sbestTrainIdxRow[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int i = BLOCK_DIM_Y; i < 2 * BLOCK_DIM_Y; ++i)
|
|
|
|
{
|
|
|
|
result_type val = sdistMinRow[i];
|
|
|
|
|
|
|
|
if (val < distMin2)
|
|
|
|
{
|
|
|
|
distMin2 = val;
|
|
|
|
bestTrainIdx2 = sbestTrainIdxRow[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
trainIdx[queryIdx] = make_int2(bestTrainIdx1, bestTrainIdx2);
|
|
|
|
distance[queryIdx] = make_float2(distMin1, distMin2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Knn 2 Match kernel caller
|
|
|
|
|
|
|
|
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
|
|
|
|
void knnMatch2Simple_caller(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
|
|
|
|
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance,
|
|
|
|
cudaStream_t stream)
|
|
|
|
{
|
|
|
|
const dim3 grid(query.rows, 1, 1);
|
|
|
|
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
|
|
|
|
|
|
|
|
knnMatch2<BLOCK_DIM_X, BLOCK_DIM_Y, VecDiffGlobal<BLOCK_DIM_X, T>, Dist, T>
|
|
|
|
<<<grid, threads, 0, stream>>>(query, train, mask, trainIdx, distance);
|
|
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
|
|
|
|
if (stream == 0)
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename Dist, typename T, typename Mask>
|
|
|
|
void knnMatch2Cached_caller(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
|
|
|
|
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance,
|
|
|
|
cudaStream_t stream)
|
|
|
|
{
|
|
|
|
StaticAssert<BLOCK_DIM_X * BLOCK_DIM_Y >= MAX_LEN>::check(); // block size must be greter than descriptors length
|
|
|
|
StaticAssert<MAX_LEN % BLOCK_DIM_X == 0>::check(); // max descriptors length must divide to blockDimX
|
|
|
|
|
|
|
|
const dim3 grid(query.rows, 1, 1);
|
|
|
|
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
|
|
|
|
|
|
|
|
knnMatch2<BLOCK_DIM_X, BLOCK_DIM_Y, VecDiffCachedRegister<BLOCK_DIM_X, MAX_LEN, LEN_EQ_MAX_LEN, typename Dist::value_type>, Dist, T>
|
|
|
|
<<<grid, threads, 0, stream>>>(query, train, mask, trainIdx.data, distance.data);
|
|
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
|
|
|
|
if (stream == 0)
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Knn 2 Match Dispatcher
|
|
|
|
|
|
|
|
template <typename Dist, typename T, typename Mask>
|
|
|
|
void knnMatch2Dispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
|
|
|
|
const DevMem2D& trainIdx, const DevMem2D& distance,
|
|
|
|
int cc, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
if (query.cols < 64)
|
|
|
|
{
|
|
|
|
knnMatch2Cached_caller<16, 16, 64, false, Dist>(
|
|
|
|
query, train, mask,
|
|
|
|
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
|
|
|
|
stream);
|
|
|
|
}
|
|
|
|
else if (query.cols == 64)
|
|
|
|
{
|
|
|
|
knnMatch2Cached_caller<16, 16, 64, true, Dist>(
|
|
|
|
query, train, mask,
|
|
|
|
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
|
|
|
|
stream);
|
|
|
|
}
|
|
|
|
else if (query.cols < 128)
|
|
|
|
{
|
|
|
|
knnMatch2Cached_caller<16, 16, 128, false, Dist>(
|
|
|
|
query, train, mask,
|
|
|
|
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
|
|
|
|
stream);
|
|
|
|
}
|
|
|
|
else if (query.cols == 128 && cc >= 12)
|
|
|
|
{
|
|
|
|
knnMatch2Cached_caller<16, 16, 128, true, Dist>(
|
|
|
|
query, train, mask,
|
|
|
|
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
|
|
|
|
stream);
|
|
|
|
}
|
|
|
|
else if (query.cols < 256 && cc >= 12)
|
|
|
|
{
|
|
|
|
knnMatch2Cached_caller<16, 16, 256, false, Dist>(
|
|
|
|
query, train, mask,
|
|
|
|
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
|
|
|
|
stream);
|
|
|
|
}
|
|
|
|
else if (query.cols == 256 && cc >= 12)
|
|
|
|
{
|
|
|
|
knnMatch2Cached_caller<16, 16, 256, true, Dist>(
|
|
|
|
query, train, mask,
|
|
|
|
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
|
|
|
|
stream);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
knnMatch2Simple_caller<16, 16, Dist>(
|
|
|
|
query, train, mask,
|
|
|
|
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
|
|
|
|
stream);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Calc distance kernel
|
|
|
|
|
|
|
|
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
|
|
|
|
__global__ void calcDistance(const PtrStep_<T> query, const DevMem2D_<T> train, const Mask mask, PtrStepf distance)
|
|
|
|
{
|
|
|
|
__shared__ typename Dist::result_type sdiff[BLOCK_DIM_X * BLOCK_DIM_Y];
|
|
|
|
|
|
|
|
typename Dist::result_type* sdiff_row = sdiff + BLOCK_DIM_X * threadIdx.y;
|
|
|
|
|
|
|
|
const int queryIdx = blockIdx.x;
|
|
|
|
const T* queryDescs = query.ptr(queryIdx);
|
|
|
|
|
|
|
|
const int trainIdx = blockIdx.y * BLOCK_DIM_Y + threadIdx.y;
|
|
|
|
|
|
|
|
if (trainIdx < train.rows)
|
|
|
|
{
|
|
|
|
const T* trainDescs = train.ptr(trainIdx);
|
|
|
|
|
|
|
|
typename Dist::result_type myDist = numeric_limits<typename Dist::result_type>::max();
|
|
|
|
|
|
|
|
if (mask(queryIdx, trainIdx))
|
|
|
|
{
|
|
|
|
Dist dist;
|
|
|
|
|
|
|
|
calcVecDiffGlobal<BLOCK_DIM_X>(queryDescs, trainDescs, train.cols, dist, sdiff_row, threadIdx.x);
|
|
|
|
|
|
|
|
myDist = dist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
distance.ptr(queryIdx)[trainIdx] = myDist;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Calc distance kernel caller
|
|
|
|
|
|
|
|
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
|
|
|
|
void calcDistance_caller(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask, const DevMem2Df& distance, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
|
|
|
|
const dim3 grid(query.rows, divUp(train.rows, BLOCK_DIM_Y), 1);
|
|
|
|
|
|
|
|
calcDistance<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, T><<<grid, threads, 0, stream>>>(query, train, mask, distance);
|
|
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
|
|
|
|
if (stream == 0)
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Dist, typename T, typename Mask>
|
|
|
|
void calcDistanceDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask, const DevMem2D& allDist, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
calcDistance_caller<16, 16, Dist>(query, train, mask, static_cast<DevMem2Df>(allDist), stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// find knn match kernel
|
|
|
|
|
|
|
|
template <int BLOCK_SIZE> __global__ void findBestMatch(DevMem2Df allDist_, int i, PtrStepi trainIdx_, PtrStepf distance_)
|
|
|
|
{
|
|
|
|
const int SMEM_SIZE = BLOCK_SIZE > 64 ? BLOCK_SIZE : 64;
|
|
|
|
__shared__ float sdist[SMEM_SIZE];
|
|
|
|
__shared__ int strainIdx[SMEM_SIZE];
|
|
|
|
|
|
|
|
const int queryIdx = blockIdx.x;
|
|
|
|
|
|
|
|
float* allDist = allDist_.ptr(queryIdx);
|
|
|
|
int* trainIdx = trainIdx_.ptr(queryIdx);
|
|
|
|
float* distance = distance_.ptr(queryIdx);
|
|
|
|
|
|
|
|
float dist = numeric_limits<float>::max();
|
|
|
|
int bestIdx = -1;
|
|
|
|
|
|
|
|
for (int i = threadIdx.x; i < allDist_.cols; i += BLOCK_SIZE)
|
|
|
|
{
|
|
|
|
float reg = allDist[i];
|
|
|
|
if (reg < dist)
|
|
|
|
{
|
|
|
|
dist = reg;
|
|
|
|
bestIdx = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sdist[threadIdx.x] = dist;
|
|
|
|
strainIdx[threadIdx.x] = bestIdx;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
reducePredVal<BLOCK_SIZE>(sdist, dist, strainIdx, bestIdx, threadIdx.x, less<volatile float>());
|
|
|
|
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
{
|
|
|
|
if (dist < numeric_limits<float>::max())
|
|
|
|
{
|
|
|
|
allDist[bestIdx] = numeric_limits<float>::max();
|
|
|
|
trainIdx[i] = bestIdx;
|
|
|
|
distance[i] = dist;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// find knn match kernel caller
|
|
|
|
|
|
|
|
template <int BLOCK_SIZE> void findKnnMatch_caller(int k, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
const dim3 threads(BLOCK_SIZE, 1, 1);
|
|
|
|
const dim3 grid(trainIdx.rows, 1, 1);
|
|
|
|
|
|
|
|
for (int i = 0; i < k; ++i)
|
|
|
|
{
|
|
|
|
findBestMatch<BLOCK_SIZE><<<grid, threads, 0, stream>>>(allDist, i, trainIdx, distance);
|
|
|
|
cudaSafeCall( cudaGetLastError() );
|
|
|
|
}
|
|
|
|
|
|
|
|
if (stream == 0)
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
void findKnnMatchDispatcher(int k, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
findKnnMatch_caller<256>(k, static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Df>(distance), static_cast<DevMem2Df>(allDist), stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// knn match Dispatcher
|
|
|
|
|
|
|
|
template <typename Dist, typename T>
|
|
|
|
void knnMatchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, int k, const DevMem2D& mask,
|
|
|
|
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
|
|
|
|
int cc, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
if (mask.data)
|
|
|
|
{
|
|
|
|
if (k == 2)
|
|
|
|
{
|
|
|
|
knnMatch2Dispatcher<Dist>(query, train, SingleMask(mask), trainIdx, distance, cc, stream);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
calcDistanceDispatcher<Dist>(query, train, SingleMask(mask), allDist, stream);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (k == 2)
|
|
|
|
{
|
|
|
|
knnMatch2Dispatcher<Dist>(query, train, WithOutMask(), trainIdx, distance, cc, stream);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
calcDistanceDispatcher<Dist>(query, train, WithOutMask(), allDist, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
findKnnMatchDispatcher(k, trainIdx, distance, allDist, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// knn match caller
|
|
|
|
|
|
|
|
template <typename T> void knnMatchL1_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
|
|
|
|
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
|
|
|
|
int cc, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
knnMatchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, mask, trainIdx, distance, allDist, cc, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
template void knnMatchL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
//template void knnMatchL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
template void knnMatchL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
template void knnMatchL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
template void knnMatchL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
template void knnMatchL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
|
|
|
|
template <typename T> void knnMatchL2_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
|
|
|
|
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
|
|
|
|
int cc, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
knnMatchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, mask, trainIdx, distance, allDist, cc, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
//template void knnMatchL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
//template void knnMatchL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
//template void knnMatchL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
//template void knnMatchL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
//template void knnMatchL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
template void knnMatchL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
|
|
|
|
template <typename T> void knnMatchHamming_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
|
|
|
|
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
|
|
|
|
int cc, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
knnMatchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, mask, trainIdx, distance, allDist, cc, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
template void knnMatchHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
//template void knnMatchHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
template void knnMatchHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
//template void knnMatchHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
template void knnMatchHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
|
|
|
|
}}}
|