opencv/apps/sft/sft.cpp

162 lines
5.7 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// Trating application for Soft Cascades.
#include <sft/common.hpp>
#include <sft/octave.hpp>
#include <sft/config.hpp>
int main(int argc, char** argv)
{
using namespace sft;
2012-12-06 09:59:20 +01:00
const string keys =
"{help h usage ? | | print this message }"
"{config c | | path to configuration xml }"
;
2012-12-06 11:20:45 +01:00
cv::CommandLineParser parser(argc, argv, keys);
parser.about("Soft cascade training application.");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
if (!parser.check())
{
parser.printErrors();
return 1;
}
string configPath = parser.get<string>("config");
if (configPath.empty())
{
std::cout << "Configuration file is missing or empty. Could not start training." << std::endl << std::flush;
return 0;
}
2012-12-06 11:20:45 +01:00
std::cout << "Read configuration from file " << configPath << std::endl;
cv::FileStorage fs(configPath, cv::FileStorage::READ);
if(!fs.isOpened())
{
std::cout << "Configuration file " << configPath << " can't be opened." << std::endl << std::flush;
return 1;
}
// 1. load config
sft::Config cfg;
fs["config"] >> cfg;
std::cout << std::endl << "Training will be executed for configuration:" << std::endl << cfg << std::endl;
// 2. check and open output file
cv::FileStorage fso(cfg.outXmlPath, cv::FileStorage::WRITE);
if(!fs.isOpened())
{
std::cout << "Training stopped. Output classifier Xml file " << cfg.outXmlPath << " can't be opened." << std::endl << std::flush;
return 1;
}
// ovector strong;
// strong.reserve(cfg.octaves.size());
// fso << "softcascade" << "{" << "octaves" << "[";
// 3. Train all octaves
for (ivector::const_iterator it = cfg.octaves.begin(); it != cfg.octaves.end(); ++it)
{
int nfeatures = cfg.poolSize;
int npositives = cfg.positives;
int nnegatives = cfg.negatives;
int shrinkage = cfg.shrinkage;
int octave = *it;
2012-12-07 10:17:55 +01:00
cv::Size model = cv::Size(cfg.modelWinSize.width / cfg.shrinkage, cfg.modelWinSize.height / cfg.shrinkage );
std::string path = cfg.trainPath;
cv::Rect boundingBox(cfg.offset.x / cfg.shrinkage, cfg.offset.y / cfg.shrinkage,
cfg.modelWinSize.width / cfg.shrinkage, cfg.modelWinSize.height / cfg.shrinkage);
sft::Octave boost(boundingBox, npositives, nnegatives, octave, shrinkage);
sft::FeaturePool pool(model, nfeatures);
sft::Dataset dataset(path, boost.logScale);
if (boost.train(dataset, pool))
{
}
std::cout << "Octave " << octave << " was successfully trained..." << std::endl;
// // d. crain octave
// if (octave.train(pool, cfg.positives, cfg.negatives, cfg.weaks))
// {
// strong.push_back(octave);
// }
}
// fso << "]" << "}";
// // 3. create Soft Cascade
// // sft::SCascade cascade(cfg.modelWinSize, cfg.octs, cfg.shrinkage);
// // // 4. Generate feature pool
// // std::vector<sft::ICF> pool;
// // sft::fillPool(pool, cfg.poolSize, cfg.modelWinSize / cfg.shrinkage, cfg.seed);
// // // 5. Train all octaves
// // cascade.train(cfg.trainPath);
// // // 6. Set thresolds
// // cascade.prune();
// // // 7. Postprocess
// // cascade.normolize();
// // // 8. Write result xml
// // cv::FileStorage ofs(cfg.outXmlPath, cv::FileStorage::WRITE);
// // ofs << cfg.cascadeName << cascade;
std::cout << "Training complete..." << std::endl;
return 0;
}