2012-12-06 08:07:35 +01:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include <sft/octave.hpp>
|
2012-12-06 09:19:35 +01:00
|
|
|
#include <sft/random.hpp>
|
2012-12-06 08:07:35 +01:00
|
|
|
|
2012-12-06 09:19:35 +01:00
|
|
|
#if defined VISUALIZE_GENERATION
|
|
|
|
# include <opencv2/highgui/highgui.hpp>
|
|
|
|
# define show(a, b) \
|
|
|
|
do { \
|
|
|
|
cv::imshow(a,b); \
|
|
|
|
cv::waitkey(0); \
|
|
|
|
} while(0)
|
|
|
|
#else
|
|
|
|
# define show(a, b)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// ============ Octave ============ //
|
2012-12-06 08:07:35 +01:00
|
|
|
sft::Octave::Octave(){}
|
|
|
|
|
2012-12-06 09:19:35 +01:00
|
|
|
sft::Octave::~Octave(){}
|
|
|
|
|
|
|
|
bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx,
|
|
|
|
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
|
|
|
|
{
|
|
|
|
bool update = false;
|
|
|
|
return cv::Boost::train(trainData, CV_COL_SAMPLE, responses, varIdx, sampleIdx, varType, missingDataMask, params,
|
|
|
|
update);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ========= FeaturePool ========= //
|
|
|
|
sft::FeaturePool::FeaturePool(cv::Size m, int n) : model(m), nfeatures(n)
|
|
|
|
{
|
|
|
|
CV_Assert(m != cv::Size() && n > 0);
|
|
|
|
fill(nfeatures);
|
|
|
|
}
|
|
|
|
|
|
|
|
sft::FeaturePool::~FeaturePool(){}
|
|
|
|
|
|
|
|
|
|
|
|
void sft::FeaturePool::fill(int desired)
|
|
|
|
{
|
|
|
|
|
|
|
|
int mw = model.width;
|
|
|
|
int mh = model.height;
|
|
|
|
|
|
|
|
int maxPoolSize = (mw -1) * mw / 2 * (mh - 1) * mh / 2 * N_CHANNELS;
|
|
|
|
|
|
|
|
nfeatures = std::min(desired, maxPoolSize);
|
|
|
|
|
|
|
|
pool.reserve(nfeatures);
|
|
|
|
|
|
|
|
sft::Random::engine eng(seed);
|
|
|
|
sft::Random::engine eng_ch(seed);
|
|
|
|
|
|
|
|
sft::Random::uniform chRand(0, N_CHANNELS - 1);
|
|
|
|
|
|
|
|
sft::Random::uniform xRand(0, model.width - 2);
|
|
|
|
sft::Random::uniform yRand(0, model.height - 2);
|
|
|
|
|
|
|
|
sft::Random::uniform wRand(1, model.width - 1);
|
|
|
|
sft::Random::uniform hRand(1, model.height - 1);
|
|
|
|
|
|
|
|
while (pool.size() < size_t(nfeatures))
|
|
|
|
{
|
|
|
|
int x = xRand(eng);
|
|
|
|
int y = yRand(eng);
|
|
|
|
|
|
|
|
int w = 1 + wRand(eng, model.width - x - 1);
|
|
|
|
int h = 1 + hRand(eng, model.height - y - 1);
|
|
|
|
|
|
|
|
CV_Assert(w > 0);
|
|
|
|
CV_Assert(h > 0);
|
|
|
|
|
|
|
|
CV_Assert(w + x < model.width);
|
|
|
|
CV_Assert(h + y < model.height);
|
|
|
|
|
|
|
|
int ch = chRand(eng_ch);
|
|
|
|
|
|
|
|
sft::ICF f(x, y, w, h, ch);
|
|
|
|
|
|
|
|
if (std::find(pool.begin(), pool.end(),f) == pool.end())
|
|
|
|
pool.push_back(f);
|
|
|
|
}
|
|
|
|
}
|