opencv/modules/features2d/doc/common_interfaces_of_feature_detectors.rst

1064 lines
34 KiB
ReStructuredText
Raw Normal View History

Common Interfaces of Feature Detectors
======================================
.. highlight:: cpp
2011-02-26 12:05:10 +01:00
Feature detectors in OpenCV have wrappers with common interface that enables to switch easily
between different algorithms solving the same problem. All objects that implement keypoint detectors
inherit
:func:`FeatureDetector` interface.
.. index:: KeyPoint
2011-03-03 08:29:55 +01:00
.. KeyPoint:
KeyPoint
--------
.. c:type:: KeyPoint
2011-03-03 08:29:55 +01:00
Data structure for salient point detectors. ::
class KeyPoint
{
public:
// the default constructor
2011-02-26 12:05:10 +01:00
KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0),
class_id(-1) {}
// the full constructor
KeyPoint(Point2f _pt, float _size, float _angle=-1,
float _response=0, int _octave=0, int _class_id=-1)
2011-02-26 12:05:10 +01:00
: pt(_pt), size(_size), angle(_angle), response(_response),
octave(_octave), class_id(_class_id) {}
// another form of the full constructor
KeyPoint(float x, float y, float _size, float _angle=-1,
float _response=0, int _octave=0, int _class_id=-1)
2011-02-26 12:05:10 +01:00
: pt(x, y), size(_size), angle(_angle), response(_response),
octave(_octave), class_id(_class_id) {}
// converts vector of keypoints to vector of points
static void convert(const std::vector<KeyPoint>& keypoints,
std::vector<Point2f>& points2f,
const std::vector<int>& keypointIndexes=std::vector<int>());
2011-02-26 12:05:10 +01:00
// converts vector of points to the vector of keypoints, where each
// keypoint is assigned the same size and the same orientation
static void convert(const std::vector<Point2f>& points2f,
std::vector<KeyPoint>& keypoints,
2011-02-26 12:05:10 +01:00
float size=1, float response=1, int octave=0,
int class_id=-1);
2011-02-26 12:05:10 +01:00
// computes overlap for pair of keypoints;
// overlap is a ratio between area of keypoint regions intersection and
// area of keypoint regions union (now keypoint region is circle)
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
2011-02-26 12:05:10 +01:00
Point2f pt; // coordinates of the keypoints
float size; // diameter of the meaningfull keypoint neighborhood
float angle; // computed orientation of the keypoint (-1 if not applicable)
2011-02-26 12:05:10 +01:00
float response; // the response by which the most strong keypoints
// have been selected. Can be used for the further sorting
// or subsampling
int octave; // octave (pyramid layer) from which the keypoint has been extracted
2011-02-26 12:05:10 +01:00
int class_id; // object class (if the keypoints need to be clustered by
// an object they belong to)
};
2011-02-26 12:05:10 +01:00
// writes vector of keypoints to the file storage
void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
// reads vector of keypoints from the specified file storage node
2011-02-26 12:05:10 +01:00
void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);
2011-03-03 08:29:55 +01:00
.. index:: FeatureDetector
.. _FeatureDetector:
FeatureDetector
---------------
.. c:type:: FeatureDetector
2011-02-26 12:05:10 +01:00
Abstract base class for 2D image feature detectors. ::
class CV_EXPORTS FeatureDetector
{
public:
virtual ~FeatureDetector();
2011-02-26 12:05:10 +01:00
void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const;
2011-02-26 12:05:10 +01:00
void detect( const vector<Mat>& images,
vector<vector<KeyPoint> >& keypoints,
const vector<Mat>& masks=vector<Mat>() ) const;
2011-02-26 12:05:10 +01:00
virtual void read(const FileNode&);
virtual void write(FileStorage&) const;
2011-02-26 12:05:10 +01:00
static Ptr<FeatureDetector> create( const string& detectorType );
2011-02-26 12:05:10 +01:00
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: FeatureDetector::detect
FeatureDetector::detect
---------------------------
.. c:function:: void FeatureDetector::detect( const Mat\& image, vector<KeyPoint>\& keypoints, const Mat\& mask=Mat() ) const
Detect keypoints in an image (first variant) or image set (second variant).
2011-02-26 12:05:10 +01:00
:param image: The image.
2011-02-26 12:05:10 +01:00
:param keypoints: The detected keypoints.
2011-02-26 12:05:10 +01:00
:param mask: Mask specifying where to look for keypoints (optional). Must be a char matrix
with non-zero values in the region of interest.
.. c:function:: void FeatureDetector::detect( const vector<Mat>\& images, vector<vector<KeyPoint> >\& keypoints, const vector<Mat>\& masks=vector<Mat>() ) const
2011-02-26 12:05:10 +01:00
* **images** Images set.
2011-02-26 12:05:10 +01:00
* **keypoints** Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
* **masks** Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].
2011-02-26 12:05:10 +01:00
Each element of ``masks`` vector must be a char matrix with non-zero values in the region of interest.
.. index:: FeatureDetector::read
FeatureDetector::read
-------------------------
.. c:function:: void FeatureDetector::read( const FileNode\& fn )
Read feature detector object from file node.
2011-02-26 12:05:10 +01:00
:param fn: File node from which detector will be read.
.. index:: FeatureDetector::write
FeatureDetector::write
--------------------------
.. c:function:: void FeatureDetector::write( FileStorage\& fs ) const
Write feature detector object to file storage.
2011-02-26 12:05:10 +01:00
:param fs: File storage in which detector will be written.
.. index:: FeatureDetector::create
FeatureDetector::create
---------------------------
:func:`FeatureDetector`
.. c:function:: Ptr<FeatureDetector> FeatureDetector::create( const string\& detectorType )
2011-03-03 08:29:55 +01:00
Feature detector factory that creates of given type with default parameters (rather using default constructor).
2011-02-26 12:05:10 +01:00
:param detectorType: Feature detector type.
Now the following detector types are supported:
2011-02-26 12:05:10 +01:00
\ ``"FAST"`` --
:func:`FastFeatureDetector`,\ ``"STAR"`` --
:func:`StarFeatureDetector`,\ ``"SIFT"`` --
:func:`SiftFeatureDetector`,\ ``"SURF"`` --
:func:`SurfFeatureDetector`,\ ``"MSER"`` --
:func:`MserFeatureDetector`,\ ``"GFTT"`` --
:func:`GfttFeatureDetector`,\ ``"HARRIS"`` --
:func:`HarrisFeatureDetector` .
\
2011-02-26 12:05:10 +01:00
Also combined format is supported: feature detector adapter name ( ``"Grid"`` --
:func:`GridAdaptedFeatureDetector`,``"Pyramid"`` --
:func:`PyramidAdaptedFeatureDetector` ) + feature detector name (see above),
e.g. ``"GridFAST"``,``"PyramidSTAR"`` , etc.
.. index:: FastFeatureDetector
.. _FastFeatureDetector:
FastFeatureDetector
-------------------
.. c:type:: FastFeatureDetector
2011-02-26 12:05:10 +01:00
Wrapping class for feature detection using
:func:`FAST` method. ::
class FastFeatureDetector : public FeatureDetector
{
public:
FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: GoodFeaturesToTrackDetector
.. _GoodFeaturesToTrackDetector:
GoodFeaturesToTrackDetector
---------------------------
.. c:type:: GoodFeaturesToTrackDetector
2011-02-26 12:05:10 +01:00
Wrapping class for feature detection using
:func:`goodFeaturesToTrack` function. ::
class GoodFeaturesToTrackDetector : public FeatureDetector
{
public:
class Params
{
public:
2011-02-26 12:05:10 +01:00
Params( int maxCorners=1000, double qualityLevel=0.01,
double minDistance=1., int blockSize=3,
bool useHarrisDetector=false, double k=0.04 );
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
2011-02-26 12:05:10 +01:00
int maxCorners;
double qualityLevel;
double minDistance;
int blockSize;
bool useHarrisDetector;
double k;
};
2011-02-26 12:05:10 +01:00
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=
GoodFeaturesToTrackDetector::Params() );
2011-02-26 12:05:10 +01:00
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel,
double minDistance, int blockSize=3,
bool useHarrisDetector=false, double k=0.04 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: MserFeatureDetector
.. _MserFeatureDetector:
MserFeatureDetector
-------------------
.. c:type:: MserFeatureDetector
2011-02-26 12:05:10 +01:00
Wrapping class for feature detection using
:func:`MSER` class. ::
class MserFeatureDetector : public FeatureDetector
{
public:
MserFeatureDetector( CvMSERParams params=cvMSERParams() );
2011-02-26 12:05:10 +01:00
MserFeatureDetector( int delta, int minArea, int maxArea,
double maxVariation, double minDiversity,
2011-02-26 12:05:10 +01:00
int maxEvolution, double areaThreshold,
double minMargin, int edgeBlurSize );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: StarFeatureDetector
.. _StarFeatureDetector:
StarFeatureDetector
-------------------
.. c:type:: StarFeatureDetector
2011-02-26 12:05:10 +01:00
Wrapping class for feature detection using
:func:`StarDetector` class. ::
class StarFeatureDetector : public FeatureDetector
{
public:
2011-02-26 12:05:10 +01:00
StarFeatureDetector( int maxSize=16, int responseThreshold=30,
int lineThresholdProjected = 10,
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: SiftFeatureDetector
.. _SiftFeatureDetector:
SiftFeatureDetector
-------------------
.. c:type:: SiftFeatureDetector
2011-02-26 12:05:10 +01:00
Wrapping class for feature detection using
:func:`SIFT` class. ::
class SiftFeatureDetector : public FeatureDetector
{
public:
2011-02-26 12:05:10 +01:00
SiftFeatureDetector(
const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(),
const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
SiftFeatureDetector( double threshold, double edgeThreshold,
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: SurfFeatureDetector
.. _SurfFeatureDetector:
SurfFeatureDetector
-------------------
.. c:type:: SurfFeatureDetector
2011-02-26 12:05:10 +01:00
Wrapping class for feature detection using
:func:`SURF` class. ::
class SurfFeatureDetector : public FeatureDetector
{
public:
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3,
int octaveLayers = 4 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: GridAdaptedFeatureDetector
.. _GridAdaptedFeatureDetector:
GridAdaptedFeatureDetector
--------------------------
.. c:type:: GridAdaptedFeatureDetector
2011-03-03 08:29:55 +01:00
Adapts a detector to partition the source image into a grid and detect points in each cell. ::
class GridAdaptedFeatureDetector : public FeatureDetector
{
public:
/*
* detector Detector that will be adapted.
2011-02-26 12:05:10 +01:00
* maxTotalKeypoints Maximum count of keypoints detected on the image.
* Only the strongest keypoints will be keeped.
* gridRows Grid rows count.
* gridCols Grid column count.
*/
2011-02-26 12:05:10 +01:00
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
int maxTotalKeypoints, int gridRows=4,
int gridCols=4 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: PyramidAdaptedFeatureDetector
.. _PyramidAdaptedFeatureDetector:
PyramidAdaptedFeatureDetector
-----------------------------
.. c:type:: PyramidAdaptedFeatureDetector
2011-03-03 08:29:55 +01:00
Adapts a detector to detect points over multiple levels of a Gaussian pyramid. Useful for detectors that are not inherently scaled. ::
class PyramidAdaptedFeatureDetector : public FeatureDetector
{
public:
2011-02-26 12:05:10 +01:00
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
int levels=2 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: DynamicAdaptedFeatureDetector
DynamicAdaptedFeatureDetector
-----------------------------
2011-03-03 08:29:55 +01:00
.. c:type:: DynamicAdaptedFeatureDetector
2011-03-03 08:29:55 +01:00
An adaptively adjusting detector that iteratively detects until the desired number of features are found. ::
class DynamicAdaptedFeatureDetector: public FeatureDetector
{
public:
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjaster,
int min_features=400, int max_features=500, int max_iters=5 );
...
};
If the detector is persisted, it will "remember" the parameters
used on the last detection. In this way, the detector may be used for consistent numbers
of keypoints in a sets of images that are temporally related such as video streams or
panorama series.
The DynamicAdaptedFeatureDetector uses another detector such as FAST or SURF to do the dirty work,
with the help of an AdjusterAdapter.
After a detection, and an unsatisfactory number of features are detected,
the AdjusterAdapter will adjust the detection parameters so that the next detection will
result in more or less features. This is repeated until either the number of desired features are found
or the parameters are maxed out.
2011-02-26 12:05:10 +01:00
Adapters can easily be implemented for any detector via the
AdjusterAdapter interface.
Beware that this is not thread safe - as the adjustment of parameters breaks the const
of the detection routine...
2011-02-26 12:05:10 +01:00
Here is a sample of how to create a DynamicAdaptedFeatureDetector. ::
//sample usage:
2011-02-26 12:05:10 +01:00
//will create a detector that attempts to find
//100 - 110 FAST Keypoints, and will at most run
2011-02-26 12:05:10 +01:00
//FAST feature detection 10 times until that
//number of keypoints are found
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector (100, 110, 10,
new FastAdjuster(20,true)));
2011-03-03 08:29:55 +01:00
.. index:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
----------------------------------------------------------------
.. c:function:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>\& adjaster, int min_features, int max_features, int max_iters )
DynamicAdaptedFeatureDetector constructor.
:param adjaster: An :func:`AdjusterAdapter` that will do the detection and parameter
adjustment
:param min_features: This minimum desired number features.
:param max_features: The maximum desired number of features.
:param max_iters: The maximum number of times to try to adjust the feature detector parameters. For the :func:`FastAdjuster` this number can be high,
but with Star or Surf, many iterations can get time consuming. At each iteration the detector is rerun, so keep this in mind when choosing this value.
.. index:: AdjusterAdapter
AdjusterAdapter
---------------
.. c:type:: AdjusterAdapter
A feature detector parameter adjuster interface, this is used by the :func:`DynamicAdaptedFeatureDetector` and is a wrapper for :func:`FeatureDetecto` r that allow them to be adjusted after a detection. ::
class AdjusterAdapter: public FeatureDetector
{
public:
virtual ~AdjusterAdapter() {}
virtual void tooFew(int min, int n_detected) = 0;
virtual void tooMany(int max, int n_detected) = 0;
virtual bool good() const = 0;
};
See
:func:`FastAdjuster`,:func:`StarAdjuster`,:func:`SurfAdjuster` for concrete implementations.
.. index:: AdjusterAdapter::tooFew
AdjusterAdapter::tooFew
---------------------------
.. c:function:: virtual void tooFew(int min, int n_detected) = 0
Too few features were detected so, adjust the detector parameters accordingly - so that the next detection detects more features.
:param min: This minimum desired number features.
:param n_detected: The actual number detected last run.
An example implementation of this is ::
void FastAdjuster::tooFew(int min, int n_detected)
{
thresh_--;
}
.. index:: AdjusterAdapter::tooMany
AdjusterAdapter::tooMany
----------------------------
.. c:function:: virtual void tooMany(int max, int n_detected) = 0
Too many features were detected so, adjust the detector parameters accordingly - so that the next detection detects less features.
:param max: This maximum desired number features.
:param n_detected: The actual number detected last run.
An example implementation of this is ::
void FastAdjuster::tooMany(int min, int n_detected)
{
thresh_++;
}
.. index:: AdjusterAdapter::good
AdjusterAdapter::good
-------------------------
.. c:function:: virtual bool good() const = 0
Are params maxed out or still valid? Returns false if the parameters can't be adjusted any more. An example implementation of this is ::
bool FastAdjuster::good() const
{
return (thresh_ > 1) && (thresh_ < 200);
}
.. index:: FastAdjuster
FastAdjuster
------------
.. c:type:: FastAdjuster
:func:`AdjusterAdapter` for the :func:`FastFeatureDetector`. This will basically decrement or increment the threshhold by 1 ::
class FastAdjuster FastAdjuster: public AdjusterAdapter
{
public:
FastAdjuster(int init_thresh = 20, bool nonmax = true);
...
};
.. index:: StarAdjuster
StarAdjuster
------------
.. c:type:: StarAdjuster
:func:`AdjusterAdapter` for the :func:`StarFeatureDetector` . This adjusts the responseThreshhold of StarFeatureDetector. ::
class StarAdjuster: public AdjusterAdapter
{
StarAdjuster(double initial_thresh = 30.0);
...
};
.. index:: SurfAdjuster
SurfAdjuster
------------
.. c:type:: SurfAdjuster
:func:`AdjusterAdapter` for the :func:`SurfFeatureDetector` . This adjusts the hessianThreshold of SurfFeatureDetector. ::
class SurfAdjuster: public SurfAdjuster
{
SurfAdjuster();
...
};
.. index:: FeatureDetector
FeatureDetector
---------------
.. c:type:: FeatureDetector
Abstract base class for 2D image feature detectors. ::
class CV_EXPORTS FeatureDetector
{
public:
virtual ~FeatureDetector();
void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const;
void detect( const vector<Mat>& images,
vector<vector<KeyPoint> >& keypoints,
const vector<Mat>& masks=vector<Mat>() ) const;
virtual void read(const FileNode&);
virtual void write(FileStorage&) const;
static Ptr<FeatureDetector> create( const string& detectorType );
protected:
...
};
.. index:: FeatureDetector::detect
FeatureDetector::detect
---------------------------
.. c:function:: void FeatureDetector::detect( const Mat\& image, vector<KeyPoint>\& keypoints, const Mat\& mask=Mat() ) const
Detect keypoints in an image (first variant) or image set (second variant).
:param image: The image.
:param keypoints: The detected keypoints.
:param mask: Mask specifying where to look for keypoints (optional). Must be a char matrix
with non-zero values in the region of interest.
.. c:function:: void FeatureDetector::detect( const vector<Mat>\& images, vector<vector<KeyPoint> >\& keypoints, const vector<Mat>\& masks=vector<Mat>() ) const
* **images** Images set.
* **keypoints** Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
* **masks** Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].
Each element of ``masks`` vector must be a char matrix with non-zero values in the region of interest.
.. index:: FeatureDetector::read
FeatureDetector::read
-------------------------
.. c:function:: void FeatureDetector::read( const FileNode\& fn )
Read feature detector object from file node.
:param fn: File node from which detector will be read.
.. index:: FeatureDetector::write
FeatureDetector::write
--------------------------
.. c:function:: void FeatureDetector::write( FileStorage\& fs ) const
Write feature detector object to file storage.
:param fs: File storage in which detector will be written.
.. index:: FeatureDetector::create
FeatureDetector::create
---------------------------
:func:`FeatureDetector`
.. c:function:: Ptr<FeatureDetector> FeatureDetector::create( const string\& detectorType )
Feature detector factory that creates of given type with default parameters (rather using default constructor).
:param detectorType: Feature detector type.
Now the following detector types are supported:
* ``"FAST"`` -- :func:`FastFeatureDetector`,
* ``"STAR"`` -- :func:`StarFeatureDetector`,
* ``"SIFT"`` -- :func:`SiftFeatureDetector`,
* ``"SURF"`` -- :func:`SurfFeatureDetector`,
* ``"MSER"`` -- :func:`MserFeatureDetector`,
* ``"GFTT"`` -- :func:`GfttFeatureDetector`,
* ``"HARRIS"`` -- :func:`HarrisFeatureDetector` .
Also combined format is supported: feature detector adapter name ( ``"Grid"`` --
:func:`GridAdaptedFeatureDetector`,``"Pyramid"`` --
:func:`PyramidAdaptedFeatureDetector` ) + feature detector name (see above),
e.g. ``"GridFAST"``,``"PyramidSTAR"`` , etc.
.. index:: FastFeatureDetector
FastFeatureDetector
-------------------
.. c:type:: FastFeatureDetector
Wrapping class for feature detection using
:func:`FAST` method. ::
class FastFeatureDetector : public FeatureDetector
{
public:
FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. index:: GoodFeaturesToTrackDetector
GoodFeaturesToTrackDetector
---------------------------
.. c:type:: GoodFeaturesToTrackDetector
Wrapping class for feature detection using :func:`goodFeaturesToTrack` function. ::
class GoodFeaturesToTrackDetector : public FeatureDetector
{
public:
class Params
{
public:
Params( int maxCorners=1000, double qualityLevel=0.01,
double minDistance=1., int blockSize=3,
bool useHarrisDetector=false, double k=0.04 );
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
int maxCorners;
double qualityLevel;
double minDistance;
int blockSize;
bool useHarrisDetector;
double k;
};
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=
GoodFeaturesToTrackDetector::Params() );
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel,
double minDistance, int blockSize=3,
bool useHarrisDetector=false, double k=0.04 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. index:: MserFeatureDetector
MserFeatureDetector
-------------------
.. c:type:: MserFeatureDetector
Wrapping class for feature detection using :func:`MSER` class. ::
class MserFeatureDetector : public FeatureDetector
{
public:
MserFeatureDetector( CvMSERParams params=cvMSERParams() );
MserFeatureDetector( int delta, int minArea, int maxArea,
double maxVariation, double minDiversity,
int maxEvolution, double areaThreshold,
double minMargin, int edgeBlurSize );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. index:: StarFeatureDetector
StarFeatureDetector
-------------------
.. c:type:: StarFeatureDetector
Wrapping class for feature detection using :func:`StarDetector` class. ::
class StarFeatureDetector : public FeatureDetector
{
public:
StarFeatureDetector( int maxSize=16, int responseThreshold=30,
int lineThresholdProjected = 10,
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. index:: SiftFeatureDetector
SiftFeatureDetector
-------------------
.. c:type:: SiftFeatureDetector
Wrapping class for feature detection using :func:`SIFT` class. ::
class SiftFeatureDetector : public FeatureDetector
{
public:
SiftFeatureDetector(
const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(),
const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
SiftFeatureDetector( double threshold, double edgeThreshold,
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. index:: SurfFeatureDetector
SurfFeatureDetector
-------------------
.. c:type:: SurfFeatureDetector
Wrapping class for feature detection using :func:`SURF` class. ::
class SurfFeatureDetector : public FeatureDetector
{
public:
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3,
int octaveLayers = 4 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. index:: GridAdaptedFeatureDetector
GridAdaptedFeatureDetector
--------------------------
.. c:type:: GridAdaptedFeatureDetector
Adapts a detector to partition the source image into a grid and detect points in each cell. ::
class GridAdaptedFeatureDetector : public FeatureDetector
{
public:
/*
* detector Detector that will be adapted.
* maxTotalKeypoints Maximum count of keypoints detected on the image.
* Only the strongest keypoints will be keeped.
* gridRows Grid rows count.
* gridCols Grid column count.
*/
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
int maxTotalKeypoints, int gridRows=4,
int gridCols=4 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. index:: PyramidAdaptedFeatureDetector
PyramidAdaptedFeatureDetector
-----------------------------
.. c:type:: PyramidAdaptedFeatureDetector
Adapts a detector to detect points over multiple levels of a Gaussian pyramid. Useful for detectors that are not inherently scaled. ::
class PyramidAdaptedFeatureDetector : public FeatureDetector
{
public:
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
int levels=2 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. index:: DynamicAdaptedFeatureDetector
DynamicAdaptedFeatureDetector
-----------------------------
.. c:type:: DynamicAdaptedFeatureDetector
An adaptively adjusting detector that iteratively detects until the desired number of features are found. ::
2011-02-26 12:05:10 +01:00
class DynamicAdaptedFeatureDetector: public FeatureDetector
{
public:
2011-02-26 12:05:10 +01:00
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjaster,
int min_features=400, int max_features=500, int max_iters=5 );
...
};
2011-03-03 08:29:55 +01:00
If the detector is persisted, it will "remember" the parameters
used on the last detection. In this way, the detector may be used for consistent numbers
of keypoints in a sets of images that are temporally related such as video streams or
panorama series.
The DynamicAdaptedFeatureDetector uses another detector such as FAST or SURF to do the dirty work,
with the help of an AdjusterAdapter.
After a detection, and an unsatisfactory number of features are detected,
the AdjusterAdapter will adjust the detection parameters so that the next detection will
result in more or less features. This is repeated until either the number of desired features are found
or the parameters are maxed out.
Adapters can easily be implemented for any detector via the
AdjusterAdapter interface.
Beware that this is not thread safe - as the adjustment of parameters breaks the const
of the detection routine...
Here is a sample of how to create a DynamicAdaptedFeatureDetector. ::
//sample usage:
//will create a detector that attempts to find
//100 - 110 FAST Keypoints, and will at most run
//FAST feature detection 10 times until that
//number of keypoints are found
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector (100, 110, 10,
new FastAdjuster(20,true)));
.. index:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
----------------------------------------------------------------
.. c:function:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>\& adjaster, int min_features, int max_features, int max_iters )
DynamicAdaptedFeatureDetector constructor.
2011-02-26 12:05:10 +01:00
:param adjaster: An :func:`AdjusterAdapter` that will do the detection and parameter
adjustment
2011-02-26 12:05:10 +01:00
:param min_features: This minimum desired number features.
2011-02-26 12:05:10 +01:00
:param max_features: The maximum desired number of features.
2011-02-26 12:05:10 +01:00
:param max_iters: The maximum number of times to try to adjust the feature detector parameters. For the :func:`FastAdjuster` this number can be high,
but with Star or Surf, many iterations can get time consuming. At each iteration the detector is rerun, so keep this in mind when choosing this value.
.. index:: AdjusterAdapter
AdjusterAdapter
---------------
2011-03-03 08:29:55 +01:00
.. c:type:: AdjusterAdapter
2011-03-03 08:29:55 +01:00
A feature detector parameter adjuster interface, this is used by the :func:`DynamicAdaptedFeatureDetector` and is a wrapper for :func:`FeatureDetecto` r that allow them to be adjusted after a detection. ::
class AdjusterAdapter: public FeatureDetector
{
public:
virtual ~AdjusterAdapter() {}
virtual void tooFew(int min, int n_detected) = 0;
virtual void tooMany(int max, int n_detected) = 0;
virtual bool good() const = 0;
};
2011-02-26 12:05:10 +01:00
See
2011-03-03 08:29:55 +01:00
:func:`FastAdjuster`,:func:`StarAdjuster`,:func:`SurfAdjuster` for concrete implementations.
.. index:: AdjusterAdapter::tooFew
AdjusterAdapter::tooFew
---------------------------
.. c:function:: virtual void tooFew(int min, int n_detected) = 0
2011-03-03 08:29:55 +01:00
Too few features were detected so, adjust the detector parameters accordingly - so that the next detection detects more features.
2011-02-26 12:05:10 +01:00
:param min: This minimum desired number features.
2011-02-26 12:05:10 +01:00
:param n_detected: The actual number detected last run.
2011-02-26 12:05:10 +01:00
An example implementation of this is ::
2011-02-26 12:05:10 +01:00
void FastAdjuster::tooFew(int min, int n_detected)
{
thresh_--;
}
2011-03-03 08:29:55 +01:00
.. index:: AdjusterAdapter::tooMany
AdjusterAdapter::tooMany
----------------------------
.. c:function:: virtual void tooMany(int max, int n_detected) = 0
2011-03-03 08:29:55 +01:00
Too many features were detected so, adjust the detector parameters accordingly - so that the next detection detects less features.
2011-02-26 12:05:10 +01:00
:param max: This maximum desired number features.
2011-02-26 12:05:10 +01:00
:param n_detected: The actual number detected last run.
2011-02-26 12:05:10 +01:00
An example implementation of this is ::
2011-02-26 12:05:10 +01:00
void FastAdjuster::tooMany(int min, int n_detected)
{
thresh_++;
}
2011-03-03 08:29:55 +01:00
.. index:: AdjusterAdapter::good
AdjusterAdapter::good
-------------------------
.. c:function:: virtual bool good() const = 0
2011-03-03 08:29:55 +01:00
Are params maxed out or still valid? Returns false if the parameters can't be adjusted any more. An example implementation of this is ::
2011-02-26 12:05:10 +01:00
bool FastAdjuster::good() const
{
return (thresh_ > 1) && (thresh_ < 200);
}
2011-03-03 08:29:55 +01:00
.. index:: FastAdjuster
FastAdjuster
------------
2011-03-03 08:29:55 +01:00
.. c:type:: FastAdjuster
2011-03-03 08:29:55 +01:00
:func:`AdjusterAdapter` for the :func:`FastFeatureDetector`. This will basically decrement or increment the threshhold by 1 ::
2011-02-26 12:05:10 +01:00
class FastAdjuster FastAdjuster: public AdjusterAdapter
{
public:
FastAdjuster(int init_thresh = 20, bool nonmax = true);
...
};
2011-03-03 08:29:55 +01:00
.. index:: StarAdjuster
StarAdjuster
------------
2011-03-03 08:29:55 +01:00
.. c:type:: StarAdjuster
2011-03-03 08:29:55 +01:00
:func:`AdjusterAdapter` for the :func:`StarFeatureDetector` . This adjusts the responseThreshhold of StarFeatureDetector. ::
2011-02-26 12:05:10 +01:00
class StarAdjuster: public AdjusterAdapter
{
StarAdjuster(double initial_thresh = 30.0);
...
};
2011-03-03 08:29:55 +01:00
.. index:: SurfAdjuster
SurfAdjuster
------------
2011-03-03 08:29:55 +01:00
.. c:type:: SurfAdjuster
2011-03-03 08:29:55 +01:00
:func:`AdjusterAdapter` for the :func:`SurfFeatureDetector` . This adjusts the hessianThreshold of SurfFeatureDetector. ::
2011-02-26 12:05:10 +01:00
class SurfAdjuster: public SurfAdjuster
{
SurfAdjuster();
...
};
2011-03-03 08:29:55 +01:00
..