2011-08-11 20:42:08 +00:00
/*#******************************************************************************
* * IMPORTANT : READ BEFORE DOWNLOADING , COPYING , INSTALLING OR USING .
* *
* * By downloading , copying , installing or using the software you agree to this license .
* * If you do not agree to this license , do not download , install ,
* * copy or use the software .
* *
* *
* * HVStools : interfaces allowing OpenCV users to integrate Human Vision System models . Presented models originate from Jeanny Herault ' s original research and have been reused and adapted by the author & collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa - Lab .
* * Use : extract still images & image sequences features , from contours details to motion spatio - temporal features , etc . for high level visual scene analysis . Also contribute to image enhancement / compression such as tone mapping .
* *
* * Maintainers : Listic lab ( code author current affiliation & applications ) and Gipsa Lab ( original research origins & applications )
* *
* * Creation - enhancement process 2007 - 2011
* * Author : Alexandre Benoit ( benoit . alexandre . vision @ gmail . com ) , LISTIC lab , Annecy le vieux , France
* *
* * Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa - Lab ( www . gipsa - lab . inpg . fr ) and the research he pursues at LISTIC Lab ( www . listic . univ - savoie . fr ) .
* * Refer to the following research paper for more information :
* * Benoit A . , Caplier A . , Durette B . , Herault , J . , " USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING " , Elsevier , Computer Vision and Image Understanding 114 ( 2010 ) , pp . 758 - 773 , DOI : http : //dx.doi.org/10.1016/j.cviu.2010.01.011
* * This work have been carried out thanks to Jeanny Herault who ' s research and great discussions are the basis of all this work , please take a look at his book :
* * Vision : Images , Signals and Neural Networks : Models of Neural Processing in Visual Perception ( Progress in Neural Processing ) , By : Jeanny Herault , ISBN : 9814273686. WAPI ( Tower ID ) : 113266891.
* *
* * The retina filter includes the research contributions of phd / research collegues from which code has been redrawn by the author :
* * _take a look at the retinacolor . hpp module to discover Brice Chaix de Lavarene color mosaicing / demosaicing and the reference paper :
* * = = = = > B . Chaix de Lavarene , D . Alleysson , B . Durette , J . Herault ( 2007 ) . " Efficient demosaicing through recursive filtering " , IEEE International Conference on Image Processing ICIP 2007
* * _take a look at imagelogpolprojection . hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault . A Retina / V1 cortex projection is also proposed and originates from Jeanny ' s discussions .
* * = = = = > more informations in the above cited Jeanny Heraults ' s book .
* *
* * License Agreement
* * For Open Source Computer Vision Library
* *
* * Copyright ( C ) 2000 - 2008 , Intel Corporation , all rights reserved .
* * Copyright ( C ) 2008 - 2011 , Willow Garage Inc . , all rights reserved .
* *
* * For Human Visual System tools ( hvstools )
* * Copyright ( C ) 2007 - 2011 , LISTIC Lab , Annecy le Vieux and GIPSA Lab , Grenoble , France , all rights reserved .
* *
* * Third party copyrights are property of their respective owners .
* *
* * Redistribution and use in source and binary forms , with or without modification ,
* * are permitted provided that the following conditions are met :
* *
* * * Redistributions of source code must retain the above copyright notice ,
* * this list of conditions and the following disclaimer .
* *
* * * Redistributions in binary form must reproduce the above copyright notice ,
* * this list of conditions and the following disclaimer in the documentation
* * and / or other materials provided with the distribution .
* *
* * * The name of the copyright holders may not be used to endorse or promote products
* * derived from this software without specific prior written permission .
* *
* * This software is provided by the copyright holders and contributors " as is " and
* * any express or implied warranties , including , but not limited to , the implied
* * warranties of merchantability and fitness for a particular purpose are disclaimed .
* * In no event shall the Intel Corporation or contributors be liable for any direct ,
* * indirect , incidental , special , exemplary , or consequential damages
* * ( including , but not limited to , procurement of substitute goods or services ;
* * loss of use , data , or profits ; or business interruption ) however caused
* * and on any theory of liability , whether in contract , strict liability ,
* * or tort ( including negligence or otherwise ) arising in any way out of
* * the use of this software , even if advised of the possibility of such damage .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# ifndef IMAGELOGPOLPROJECTION_H_
# define IMAGELOGPOLPROJECTION_H_
/**
* @ class ImageLogPolProjection
* @ brief class able to perform a log sampling of an image input ( models the log sampling of the photoreceptors of the retina )
* or a log polar projection which models the retina information projection on the primary visual cortex : a linear projection in the center for detail analysis and a log projection of the borders ( low spatial frequency motion information in general )
*
* collaboration : Barthelemy DURETTE who experimented the retina log projection
- > " Traitement visuels Bio mimtiques pour la supplance perceptive " , internal technical report , May 2005 , Gipsa - lab / DIS , Grenoble , FRANCE
*
* * TYPICAL USE :
*
* // create object, here for a log sampling (keyword:RETINALOGPROJECTION): (dynamic object allocation sample)
* ImageLogPolProjection * imageSamplingTool ;
* imageSamplingTool = new ImageLogPolProjection ( frameSizeRows , frameSizeColumns , RETINALOGPROJECTION ) ;
*
* // init log projection:
* imageSamplingTool - > initProjection ( 1.0 , 15.0 ) ;
*
* // during program execution, call the log transform applied to a frame called "FrameBuffer" :
* imageSamplingTool - > runProjection ( FrameBuffer ) ;
* // get output frame and its size:
* const unsigned int logSampledFrame_nbRows = imageSamplingTool - > getOutputNBrows ( ) ;
* const unsigned int logSampledFrame_nbColumns = imageSamplingTool - > getOutputNBcolumns ( ) ;
* const double * logSampledFrame = imageSamplingTool - > getSampledFrame ( ) ;
*
* // at the end of the program, destroy object:
* delete imageSamplingTool ;
*
* @ author Alexandre BENOIT , benoit . alexandre . vision @ gmail . com , LISTIC : www . listic . univ - savoie . fr , Gipsa - Lab , France : www . gipsa - lab . inpg . fr /
* Creation date 2007
*/
//#define __IMAGELOGPOLPROJECTION_DEBUG // used for std output debug information
# include "basicretinafilter.hpp"
namespace cv
{
class ImageLogPolProjection : public BasicRetinaFilter
{
public :
enum PROJECTIONTYPE { RETINALOGPROJECTION , CORTEXLOGPOLARPROJECTION } ;
/**
* constructor , just specifies the image input size and the projection type , no projection initialisation is done
* - > use initLogRetinaSampling ( ) or initLogPolarCortexSampling ( ) for that
* @ param nbRows : number of rows of the input image
* @ param nbColumns : number of columns of the input image
* @ param projection : the type of projection , RETINALOGPROJECTION or CORTEXLOGPOLARPROJECTION
* @ param colorMode : specifies if the projection is applied on a grayscale image ( false ) or color images ( 3 layers ) ( true )
*/
ImageLogPolProjection ( const unsigned int nbRows , const unsigned int nbColumns , const PROJECTIONTYPE projection , const bool colorMode = false ) ;
/**
* standard destructor
*/
virtual ~ ImageLogPolProjection ( ) ;
/**
* function that clears all buffers of the object
*/
void clearAllBuffers ( ) ;
/**
* resize retina color filter object ( resize all allocated buffers )
* @ param NBrows : the new height size
* @ param NBcolumns : the new width size
*/
void resize ( const unsigned int NBrows , const unsigned int NBcolumns ) ;
/**
* init function depending on the projection type
* @ param reductionFactor : the size reduction factor of the ouptup image in regard of the size of the input image , must be superior to 1
* @ param samplingStrenght : specifies the strenght of the log compression effect ( magnifying coefficient )
* @ return true if the init was performed without any errors
*/
bool initProjection ( const double reductionFactor , const double samplingStrenght ) ;
/**
* main funtion of the class : run projection function
* @ param inputFrame : the input frame to be processed
2011-08-21 11:01:53 +00:00
* @ param colorMode : the input buffer color mode : false = gray levels , true = 3 color channels mode
2011-08-11 20:42:08 +00:00
* @ return the output frame
*/
2011-08-21 11:01:53 +00:00
std : : valarray < float > & runProjection ( const std : : valarray < float > & inputFrame , const bool colorMode = false ) ;
2011-08-11 20:42:08 +00:00
/**
* @ return the numbers of rows ( height ) of the images OUTPUTS of the object
*/
inline const unsigned int getOutputNBrows ( ) { return _outputNBrows ; } ;
/**
* @ return the numbers of columns ( width ) of the images OUTPUTS of the object
*/
inline const unsigned int getOutputNBcolumns ( ) { return _outputNBcolumns ; } ;
/**
* main funtion of the class : run projection function
* @ param size : one of the input frame initial dimensions to be processed
* @ return the output frame dimension
*/
inline static const unsigned int predictOutputSize ( const unsigned int size , const double reductionFactor ) { return ( unsigned int ) ( ( double ) size / reductionFactor ) ; } ;
/**
* @ return the output of the filter which applies an irregular Low Pass spatial filter to the imag input ( see function
*/
2011-08-21 11:01:53 +00:00
inline const std : : valarray < float > & getIrregularLPfilteredInputFrame ( ) const { return _irregularLPfilteredFrame ; } ;
2011-08-11 20:42:08 +00:00
/**
* function which allows to retrieve the output frame which was updated after the " runProjection(...) function BasicRetinaFilter::runProgressiveFilter(...)
* @ return the projection result
*/
2011-08-21 11:01:53 +00:00
inline const std : : valarray < float > & getSampledFrame ( ) const { return _sampledFrame ; } ;
2011-08-11 20:42:08 +00:00
/**
* function which allows gives the tranformation table , its size is ( getNBrows ( ) * getNBcolumns ( ) * 2 )
* @ return the transformation matrix [ outputPixIndex_i , inputPixIndex_i , outputPixIndex_i + 1 , inputPixIndex_i + 1. . . . ]
*/
inline const std : : valarray < unsigned int > & getSamplingMap ( ) const { return _transformTable ; } ;
inline const double getOriginalRadiusLength ( const double projectedRadiusLength ) { return _azero / ( _alim - projectedRadiusLength * 2.0 / _minDimension ) ; } ;
// unsigned int getInputPixelIndex(const unsigned int ){ return _transformTable[index*2+1]};
private :
PROJECTIONTYPE _selectedProjection ;
// size of the image output
unsigned int _outputNBrows ;
unsigned int _outputNBcolumns ;
unsigned int _outputNBpixels ;
unsigned int _outputDoubleNBpixels ;
unsigned int _inputDoubleNBpixels ;
// is the object able to manage color flag
bool _colorModeCapable ;
// sampling strenght factor
double _samplingStrenght ;
// sampling reduction factor
double _reductionFactor ;
// log sampling parameters
double _azero ;
double _alim ;
double _minDimension ;
// template buffers
2011-08-21 11:01:53 +00:00
std : : valarray < float > _sampledFrame ;
std : : valarray < float > & _tempBuffer ;
2011-08-11 20:42:08 +00:00
std : : valarray < unsigned int > _transformTable ;
2011-08-21 11:01:53 +00:00
std : : valarray < float > & _irregularLPfilteredFrame ; // just a reference for easier understanding
2011-08-11 20:42:08 +00:00
unsigned int _usefullpixelIndex ;
// init transformation tables
bool _computeLogProjection ( ) ;
bool _computeLogPolarProjection ( ) ;
// specifies if init was done correctly
bool _initOK ;
// private init projections functions called by "initProjection(...)" function
bool _initLogRetinaSampling ( const double reductionFactor , const double samplingStrenght ) ;
bool _initLogPolarCortexSampling ( const double reductionFactor , const double samplingStrenght ) ;
2012-02-14 10:22:34 +00:00
ImageLogPolProjection ( const ImageLogPolProjection & ) ;
ImageLogPolProjection & operator = ( const ImageLogPolProjection & ) ;
2011-08-11 20:42:08 +00:00
} ;
}
# endif /*IMAGELOGPOLPROJECTION_H_*/