2013-04-16 09:12:55 +02:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
2013-08-28 13:45:13 +02:00
|
|
|
using namespace cv::cuda;
|
2013-04-16 09:12:55 +02:00
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
cv::cuda::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
|
2013-04-16 09:12:55 +02:00
|
|
|
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_),
|
|
|
|
step(step_), data((uchar*)data_), refcount(0),
|
|
|
|
datastart((uchar*)data_), dataend((uchar*)data_)
|
|
|
|
{
|
|
|
|
size_t minstep = cols * elemSize();
|
|
|
|
|
|
|
|
if (step == Mat::AUTO_STEP)
|
|
|
|
{
|
|
|
|
step = minstep;
|
|
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (rows == 1)
|
|
|
|
step = minstep;
|
|
|
|
|
|
|
|
CV_DbgAssert( step >= minstep );
|
|
|
|
|
|
|
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
dataend += step * (rows - 1) + minstep;
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
cv::cuda::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
|
2013-04-16 09:12:55 +02:00
|
|
|
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width),
|
|
|
|
step(step_), data((uchar*)data_), refcount(0),
|
|
|
|
datastart((uchar*)data_), dataend((uchar*)data_)
|
|
|
|
{
|
|
|
|
size_t minstep = cols * elemSize();
|
|
|
|
|
|
|
|
if (step == Mat::AUTO_STEP)
|
|
|
|
{
|
|
|
|
step = minstep;
|
|
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (rows == 1)
|
|
|
|
step = minstep;
|
|
|
|
|
|
|
|
CV_DbgAssert( step >= minstep );
|
|
|
|
|
|
|
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
|
|
|
|
}
|
|
|
|
dataend += step * (rows - 1) + minstep;
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
cv::cuda::GpuMat::GpuMat(const GpuMat& m, Range rowRange_, Range colRange_)
|
2013-04-16 09:12:55 +02:00
|
|
|
{
|
|
|
|
flags = m.flags;
|
|
|
|
step = m.step; refcount = m.refcount;
|
|
|
|
data = m.data; datastart = m.datastart; dataend = m.dataend;
|
|
|
|
|
|
|
|
if (rowRange_ == Range::all())
|
|
|
|
{
|
|
|
|
rows = m.rows;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_Assert( 0 <= rowRange_.start && rowRange_.start <= rowRange_.end && rowRange_.end <= m.rows );
|
|
|
|
|
|
|
|
rows = rowRange_.size();
|
|
|
|
data += step*rowRange_.start;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (colRange_ == Range::all())
|
|
|
|
{
|
|
|
|
cols = m.cols;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_Assert( 0 <= colRange_.start && colRange_.start <= colRange_.end && colRange_.end <= m.cols );
|
|
|
|
|
|
|
|
cols = colRange_.size();
|
|
|
|
data += colRange_.start*elemSize();
|
|
|
|
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rows == 1)
|
|
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
|
|
|
|
|
|
if (refcount)
|
|
|
|
CV_XADD(refcount, 1);
|
|
|
|
|
|
|
|
if (rows <= 0 || cols <= 0)
|
|
|
|
rows = cols = 0;
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
cv::cuda::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
|
2013-04-16 09:12:55 +02:00
|
|
|
flags(m.flags), rows(roi.height), cols(roi.width),
|
|
|
|
step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
|
|
|
|
datastart(m.datastart), dataend(m.dataend)
|
|
|
|
{
|
|
|
|
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
|
|
|
|
data += roi.x * elemSize();
|
|
|
|
|
|
|
|
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
|
|
|
|
|
|
|
|
if (refcount)
|
|
|
|
CV_XADD(refcount, 1);
|
|
|
|
|
|
|
|
if (rows <= 0 || cols <= 0)
|
|
|
|
rows = cols = 0;
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
GpuMat cv::cuda::GpuMat::reshape(int new_cn, int new_rows) const
|
2013-04-16 09:12:55 +02:00
|
|
|
{
|
|
|
|
GpuMat hdr = *this;
|
|
|
|
|
|
|
|
int cn = channels();
|
|
|
|
if (new_cn == 0)
|
|
|
|
new_cn = cn;
|
|
|
|
|
|
|
|
int total_width = cols * cn;
|
|
|
|
|
|
|
|
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
|
|
|
|
new_rows = rows * total_width / new_cn;
|
|
|
|
|
|
|
|
if (new_rows != 0 && new_rows != rows)
|
|
|
|
{
|
|
|
|
int total_size = total_width * rows;
|
|
|
|
|
|
|
|
if (!isContinuous())
|
|
|
|
CV_Error(cv::Error::BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
|
|
|
|
|
|
|
|
if ((unsigned)new_rows > (unsigned)total_size)
|
|
|
|
CV_Error(cv::Error::StsOutOfRange, "Bad new number of rows");
|
|
|
|
|
|
|
|
total_width = total_size / new_rows;
|
|
|
|
|
|
|
|
if (total_width * new_rows != total_size)
|
|
|
|
CV_Error(cv::Error::StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
|
|
|
|
|
|
|
|
hdr.rows = new_rows;
|
|
|
|
hdr.step = total_width * elemSize1();
|
|
|
|
}
|
|
|
|
|
|
|
|
int new_width = total_width / new_cn;
|
|
|
|
|
|
|
|
if (new_width * new_cn != total_width)
|
|
|
|
CV_Error(cv::Error::BadNumChannels, "The total width is not divisible by the new number of channels");
|
|
|
|
|
|
|
|
hdr.cols = new_width;
|
|
|
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
|
|
|
|
|
|
|
|
return hdr;
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
|
2013-04-16 09:12:55 +02:00
|
|
|
{
|
|
|
|
CV_DbgAssert( step > 0 );
|
|
|
|
|
|
|
|
size_t esz = elemSize();
|
|
|
|
ptrdiff_t delta1 = data - datastart;
|
|
|
|
ptrdiff_t delta2 = dataend - datastart;
|
|
|
|
|
|
|
|
if (delta1 == 0)
|
|
|
|
{
|
|
|
|
ofs.x = ofs.y = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
ofs.y = static_cast<int>(delta1 / step);
|
|
|
|
ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
|
|
|
|
|
|
|
|
CV_DbgAssert( data == datastart + ofs.y * step + ofs.x * esz );
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t minstep = (ofs.x + cols) * esz;
|
|
|
|
|
|
|
|
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
|
|
|
|
wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
GpuMat& cv::cuda::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
|
2013-04-16 09:12:55 +02:00
|
|
|
{
|
|
|
|
Size wholeSize;
|
|
|
|
Point ofs;
|
|
|
|
locateROI(wholeSize, ofs);
|
|
|
|
|
|
|
|
size_t esz = elemSize();
|
|
|
|
|
|
|
|
int row1 = std::max(ofs.y - dtop, 0);
|
|
|
|
int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
|
|
|
|
|
|
|
|
int col1 = std::max(ofs.x - dleft, 0);
|
|
|
|
int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
|
|
|
|
|
|
|
|
data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
|
|
|
|
rows = row2 - row1;
|
|
|
|
cols = col2 - col1;
|
|
|
|
|
|
|
|
if (esz * cols == step || rows == 1)
|
|
|
|
flags |= Mat::CONTINUOUS_FLAG;
|
|
|
|
else
|
|
|
|
flags &= ~Mat::CONTINUOUS_FLAG;
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
2013-04-26 08:53:15 +02:00
|
|
|
namespace
|
2013-04-16 09:12:55 +02:00
|
|
|
{
|
2013-04-26 08:53:15 +02:00
|
|
|
template <class ObjType>
|
|
|
|
void createContinuousImpl(int rows, int cols, int type, ObjType& obj)
|
|
|
|
{
|
|
|
|
const int area = rows * cols;
|
2013-04-16 09:12:55 +02:00
|
|
|
|
2013-04-26 08:53:15 +02:00
|
|
|
if (obj.empty() || obj.type() != type || !obj.isContinuous() || obj.size().area() < area)
|
|
|
|
obj.create(1, area, type);
|
2013-04-16 09:12:55 +02:00
|
|
|
|
2013-04-26 08:53:15 +02:00
|
|
|
obj = obj.reshape(obj.channels(), rows);
|
|
|
|
}
|
2013-04-16 09:12:55 +02:00
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::createContinuous(int rows, int cols, int type, OutputArray arr)
|
2013-04-16 09:12:55 +02:00
|
|
|
{
|
2013-04-26 08:53:15 +02:00
|
|
|
switch (arr.kind())
|
2013-04-16 09:12:55 +02:00
|
|
|
{
|
2013-04-26 08:53:15 +02:00
|
|
|
case _InputArray::MAT:
|
|
|
|
::createContinuousImpl(rows, cols, type, arr.getMatRef());
|
|
|
|
break;
|
|
|
|
|
|
|
|
case _InputArray::GPU_MAT:
|
|
|
|
::createContinuousImpl(rows, cols, type, arr.getGpuMatRef());
|
|
|
|
break;
|
2013-04-16 09:12:55 +02:00
|
|
|
|
2013-04-26 08:53:15 +02:00
|
|
|
case _InputArray::CUDA_MEM:
|
|
|
|
::createContinuousImpl(rows, cols, type, arr.getCudaMemRef());
|
|
|
|
break;
|
2013-04-16 09:12:55 +02:00
|
|
|
|
2013-04-26 08:53:15 +02:00
|
|
|
default:
|
|
|
|
arr.create(rows, cols, type);
|
|
|
|
}
|
|
|
|
}
|
2013-04-16 09:12:55 +02:00
|
|
|
|
2013-04-26 08:53:15 +02:00
|
|
|
namespace
|
|
|
|
{
|
|
|
|
template <class ObjType>
|
|
|
|
void ensureSizeIsEnoughImpl(int rows, int cols, int type, ObjType& obj)
|
|
|
|
{
|
|
|
|
if (obj.empty() || obj.type() != type || obj.data != obj.datastart)
|
2013-04-16 09:12:55 +02:00
|
|
|
{
|
2013-04-26 08:53:15 +02:00
|
|
|
obj.create(rows, cols, type);
|
2013-04-16 09:12:55 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2013-04-26 08:53:15 +02:00
|
|
|
const size_t esz = obj.elemSize();
|
|
|
|
const ptrdiff_t delta2 = obj.dataend - obj.datastart;
|
|
|
|
|
|
|
|
const size_t minstep = obj.cols * esz;
|
|
|
|
|
|
|
|
Size wholeSize;
|
|
|
|
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / static_cast<size_t>(obj.step) + 1), obj.rows);
|
|
|
|
wholeSize.width = std::max(static_cast<int>((delta2 - static_cast<size_t>(obj.step) * (wholeSize.height - 1)) / esz), obj.cols);
|
|
|
|
|
|
|
|
if (wholeSize.height < rows || wholeSize.width < cols)
|
|
|
|
{
|
|
|
|
obj.create(rows, cols, type);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
obj.cols = cols;
|
|
|
|
obj.rows = rows;
|
|
|
|
}
|
2013-04-16 09:12:55 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr)
|
2013-04-26 08:53:15 +02:00
|
|
|
{
|
|
|
|
switch (arr.kind())
|
|
|
|
{
|
|
|
|
case _InputArray::MAT:
|
|
|
|
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getMatRef());
|
|
|
|
break;
|
|
|
|
|
|
|
|
case _InputArray::GPU_MAT:
|
|
|
|
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getGpuMatRef());
|
|
|
|
break;
|
|
|
|
|
|
|
|
case _InputArray::CUDA_MEM:
|
|
|
|
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getCudaMemRef());
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
arr.create(rows, cols, type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
GpuMat cv::cuda::allocMatFromBuf(int rows, int cols, int type, GpuMat& mat)
|
2013-04-16 09:12:55 +02:00
|
|
|
{
|
|
|
|
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
|
|
|
|
return mat(Rect(0, 0, cols, rows));
|
|
|
|
|
|
|
|
return mat = GpuMat(rows, cols, type);
|
|
|
|
}
|
2013-07-22 11:07:07 +02:00
|
|
|
|
|
|
|
#ifndef HAVE_CUDA
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::create(int _rows, int _cols, int _type)
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) _rows;
|
|
|
|
(void) _cols;
|
|
|
|
(void) _type;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::release()
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::upload(InputArray arr)
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) arr;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::upload(InputArray arr, Stream& _stream)
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) arr;
|
|
|
|
(void) _stream;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::download(OutputArray _dst) const
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) _dst;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::download(OutputArray _dst, Stream& _stream) const
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) _dst;
|
|
|
|
(void) _stream;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::copyTo(OutputArray _dst) const
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) _dst;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) _dst;
|
|
|
|
(void) _stream;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& _stream) const
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) _dst;
|
|
|
|
(void) _mask;
|
|
|
|
(void) _stream;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
GpuMat& cv::cuda::GpuMat::setTo(Scalar s, Stream& _stream)
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) s;
|
|
|
|
(void) _stream;
|
|
|
|
throw_no_cuda();
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
GpuMat& cv::cuda::GpuMat::setTo(Scalar s, InputArray _mask, Stream& _stream)
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) s;
|
|
|
|
(void) _mask;
|
|
|
|
(void) _stream;
|
|
|
|
throw_no_cuda();
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& _stream) const
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) _dst;
|
|
|
|
(void) rtype;
|
|
|
|
(void) _stream;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
2013-08-28 13:45:13 +02:00
|
|
|
void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& _stream) const
|
2013-07-22 11:07:07 +02:00
|
|
|
{
|
|
|
|
(void) _dst;
|
|
|
|
(void) rtype;
|
|
|
|
(void) alpha;
|
|
|
|
(void) beta;
|
|
|
|
(void) _stream;
|
|
|
|
throw_no_cuda();
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|