2013-08-05 15:32:39 +02:00
///////////////////////////////////////////////////////////////////////////////////////
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
2013-10-04 14:30:10 +02:00
// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV.
2013-08-05 15:32:39 +02:00
// AUTHOR:
// Rahul Kavi rahulkavi[at]live[at]com
//
2013-10-04 14:30:10 +02:00
// contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris")
// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.
// #
// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.
// # Logistic Regression ALGORITHM
// License Agreement
// For Open Source Computer Vision Library
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
2013-08-05 15:32:39 +02:00
# include <iostream>
# include <opencv2/core/core.hpp>
# include <opencv2/ml/ml.hpp>
2013-08-08 02:39:46 +02:00
# include <opencv2/highgui/highgui.hpp>
2013-08-05 15:32:39 +02:00
using namespace std ;
using namespace cv ;
2014-08-14 15:19:21 +02:00
using namespace cv : : ml ;
2013-08-05 15:32:39 +02:00
int main ( )
{
Mat data_temp , labels_temp ;
Mat data , labels ;
2013-08-10 14:49:17 +02:00
2013-08-08 02:39:46 +02:00
Mat data_train , data_test ;
Mat labels_train , labels_test ;
2013-08-05 15:32:39 +02:00
Mat responses , result ;
2013-11-05 11:30:46 +01:00
FileStorage fs1 , fs2 ;
2013-08-05 15:32:39 +02:00
FileStorage f ;
cout < < " ***************************************************************************************** " < < endl ;
cout < < " \" data01.xml \" contains digits 0 and 1 of 20 samples each, collected on an Android device " < < endl ;
cout < < " Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix " < < endl ;
cout < < " ***************************************************************************************** \n \n " < < endl ;
cout < < " loading the dataset \n " < < endl ;
f . open ( " data01.xml " , FileStorage : : READ ) ;
f [ " datamat " ] > > data_temp ;
f [ " labelsmat " ] > > labels_temp ;
data_temp . convertTo ( data , CV_32F ) ;
labels_temp . convertTo ( labels , CV_32F ) ;
2013-08-08 02:39:46 +02:00
for ( int i = 0 ; i < data . rows ; i + + )
{
if ( i % 2 = = 0 )
{
data_train . push_back ( data . row ( i ) ) ;
labels_train . push_back ( labels . row ( i ) ) ;
}
else
{
data_test . push_back ( data . row ( i ) ) ;
labels_test . push_back ( labels . row ( i ) ) ;
}
}
cout < < " training samples per class: " < < data_train . rows / 2 < < endl ;
cout < < " testing samples per class: " < < data_test . rows / 2 < < endl ;
2013-08-10 14:49:17 +02:00
2013-08-08 02:39:46 +02:00
// display sample image
Mat img_disp1 = data_train . row ( 2 ) . reshape ( 0 , 28 ) . t ( ) ;
Mat img_disp2 = data_train . row ( 18 ) . reshape ( 0 , 28 ) . t ( ) ;
imshow ( " digit 0 " , img_disp1 ) ;
imshow ( " digit 1 " , img_disp2 ) ;
2013-08-05 15:32:39 +02:00
cout < < " initializing Logisitc Regression Parameters \n " < < endl ;
2013-11-05 11:30:46 +01:00
// LogisticRegressionParams params1 = LogisticRegressionParams(0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1);
// params1 (above) with batch gradient performs better than mini batch gradient below with same parameters
LogisticRegressionParams params1 = LogisticRegressionParams ( 0.001 , 10 , LogisticRegression : : MINI_BATCH , LogisticRegression : : REG_L2 , 1 , 1 ) ;
// however mini batch gradient descent parameters with slower learning rate(below) can be used to get higher accuracy than with parameters mentioned above
// LogisticRegressionParams params1 = LogisticRegressionParams(0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
2013-08-05 15:32:39 +02:00
cout < < " training Logisitc Regression classifier \n " < < endl ;
2013-11-05 11:30:46 +01:00
LogisticRegression lr1 ( data_train , labels_train , params1 ) ;
lr1 . predict ( data_test , responses ) ;
2013-08-08 02:39:46 +02:00
labels_test . convertTo ( labels_test , CV_32S ) ;
2013-08-10 14:49:17 +02:00
2013-08-05 15:32:39 +02:00
cout < < " Original Label :: Predicted Label " < < endl ;
2013-08-08 02:39:46 +02:00
result = ( labels_test = = responses ) / 255 ;
for ( int i = 0 ; i < labels_test . rows ; i + + )
2013-08-05 15:32:39 +02:00
{
2013-08-08 02:39:46 +02:00
cout < < labels_test . at < int > ( i , 0 ) < < " :: " < < responses . at < int > ( i , 0 ) < < endl ;
2013-08-05 15:32:39 +02:00
}
2013-08-10 14:49:17 +02:00
2013-08-05 15:32:39 +02:00
// calculate accuracy
cout < < " accuracy: " < < ( ( double ) cv : : sum ( result ) [ 0 ] / result . rows ) * 100 < < " % \n " ;
2013-08-08 02:39:46 +02:00
cout < < " saving the classifier " < < endl ;
2013-08-05 15:32:39 +02:00
// save the classfier
2013-11-05 11:30:46 +01:00
fs1 . open ( " NewLR_Trained.xml " , FileStorage : : WRITE ) ;
lr1 . write ( fs1 ) ;
fs1 . release ( ) ;
2013-08-05 15:32:39 +02:00
// load the classifier onto new object
2013-11-05 11:30:46 +01:00
LogisticRegressionParams params2 = LogisticRegressionParams ( ) ;
LogisticRegression lr2 ( params2 ) ;
2013-08-05 15:32:39 +02:00
cout < < " loading a new classifier " < < endl ;
2013-11-05 11:30:46 +01:00
fs2 . open ( " NewLR_Trained.xml " , FileStorage : : READ ) ;
FileNode fn2 = fs2 . root ( ) ;
lr2 . read ( fn2 ) ;
fs2 . release ( ) ;
2013-08-05 15:32:39 +02:00
Mat responses2 ;
// predict using loaded classifier
cout < < " predicting the dataset using the loaded classfier \n " < < endl ;
2013-08-08 02:39:46 +02:00
lr2 . predict ( data_test , responses2 ) ;
2013-08-05 15:32:39 +02:00
// calculate accuracy
2013-10-04 14:30:10 +02:00
cout < < " accuracy using loaded classifier: " < < 100 * ( float ) cv : : countNonZero ( labels_test = = responses2 ) / responses2 . rows < < " % " < < endl ;
2013-08-08 02:39:46 +02:00
waitKey ( 0 ) ;
2013-08-05 15:32:39 +02:00
return 0 ;
}