2010-05-11 17:44:00 +00:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright( C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
//(including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort(including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even ifadvised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
CvEM:
|
|
|
|
* params.nclusters - number of clusters to cluster samples to.
|
|
|
|
* means - calculated by the EM algorithm set of gaussians' means.
|
|
|
|
* log_weight_div_det - auxilary vector that k-th component is equal to
|
|
|
|
(-2)*ln(weights_k/det(Sigma_k)^0.5),
|
|
|
|
where <weights_k> is the weight,
|
|
|
|
<Sigma_k> is the covariation matrice of k-th cluster.
|
|
|
|
* inv_eigen_values - set of 1*dims matrices, <inv_eigen_values>[k] contains
|
|
|
|
inversed eigen values of covariation matrice of the k-th cluster.
|
|
|
|
In the case of <cov_mat_type> == COV_MAT_DIAGONAL,
|
|
|
|
inv_eigen_values[k] = Sigma_k^(-1).
|
|
|
|
* covs_rotate_mats - used only if cov_mat_type == COV_MAT_GENERIC, in all the
|
|
|
|
other cases it is NULL. <covs_rotate_mats>[k] is the orthogonal
|
|
|
|
matrice, obtained by the SVD-decomposition of Sigma_k.
|
|
|
|
Both <inv_eigen_values> and <covs_rotate_mats> fields are used for representation of
|
|
|
|
covariation matrices and simplifying EM calculations.
|
|
|
|
For fixed k denote
|
|
|
|
u = covs_rotate_mats[k],
|
|
|
|
v = inv_eigen_values[k],
|
|
|
|
w = v^(-1);
|
|
|
|
if <cov_mat_type> == COV_MAT_GENERIC, then Sigma_k = u w u',
|
|
|
|
else Sigma_k = w.
|
|
|
|
Symbol ' means transposition.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
CvEM::CvEM()
|
|
|
|
{
|
|
|
|
means = weights = probs = inv_eigen_values = log_weight_div_det = 0;
|
|
|
|
covs = cov_rotate_mats = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
CvEM::CvEM( const CvMat* samples, const CvMat* sample_idx,
|
|
|
|
CvEMParams params, CvMat* labels )
|
|
|
|
{
|
|
|
|
means = weights = probs = inv_eigen_values = log_weight_div_det = 0;
|
|
|
|
covs = cov_rotate_mats = 0;
|
|
|
|
|
|
|
|
// just invoke the train() method
|
|
|
|
train(samples, sample_idx, params, labels);
|
|
|
|
}
|
|
|
|
|
|
|
|
CvEM::~CvEM()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvEM::clear()
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
cvReleaseMat( &means );
|
|
|
|
cvReleaseMat( &weights );
|
|
|
|
cvReleaseMat( &probs );
|
|
|
|
cvReleaseMat( &inv_eigen_values );
|
|
|
|
cvReleaseMat( &log_weight_div_det );
|
|
|
|
|
|
|
|
if( covs || cov_rotate_mats )
|
|
|
|
{
|
|
|
|
for( i = 0; i < params.nclusters; i++ )
|
|
|
|
{
|
|
|
|
if( covs )
|
|
|
|
cvReleaseMat( &covs[i] );
|
|
|
|
if( cov_rotate_mats )
|
|
|
|
cvReleaseMat( &cov_rotate_mats[i] );
|
|
|
|
}
|
|
|
|
cvFree( &covs );
|
|
|
|
cvFree( &cov_rotate_mats );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvEM::set_params( const CvEMParams& _params, const CvVectors& train_data )
|
|
|
|
{
|
|
|
|
CV_FUNCNAME( "CvEM::set_params" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int k;
|
|
|
|
|
|
|
|
params = _params;
|
|
|
|
params.term_crit = cvCheckTermCriteria( params.term_crit, 1e-6, 10000 );
|
|
|
|
|
|
|
|
if( params.cov_mat_type != COV_MAT_SPHERICAL &&
|
|
|
|
params.cov_mat_type != COV_MAT_DIAGONAL &&
|
|
|
|
params.cov_mat_type != COV_MAT_GENERIC )
|
|
|
|
CV_ERROR( CV_StsBadArg, "Unknown covariation matrix type" );
|
|
|
|
|
|
|
|
switch( params.start_step )
|
|
|
|
{
|
|
|
|
case START_M_STEP:
|
|
|
|
if( !params.probs )
|
|
|
|
CV_ERROR( CV_StsNullPtr, "Probabilities must be specified when EM algorithm starts with M-step" );
|
|
|
|
break;
|
|
|
|
case START_E_STEP:
|
|
|
|
if( !params.means )
|
|
|
|
CV_ERROR( CV_StsNullPtr, "Mean's must be specified when EM algorithm starts with E-step" );
|
|
|
|
break;
|
|
|
|
case START_AUTO_STEP:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
CV_ERROR( CV_StsBadArg, "Unknown start_step" );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( params.nclusters < 1 )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "The number of clusters (mixtures) should be > 0" );
|
|
|
|
|
|
|
|
if( params.probs )
|
|
|
|
{
|
|
|
|
const CvMat* p = params.probs;
|
|
|
|
if( !CV_IS_MAT(p) ||
|
|
|
|
(CV_MAT_TYPE(p->type) != CV_32FC1 &&
|
|
|
|
CV_MAT_TYPE(p->type) != CV_64FC1) ||
|
|
|
|
p->rows != train_data.count ||
|
|
|
|
p->cols != params.nclusters )
|
|
|
|
CV_ERROR( CV_StsBadArg, "The array of probabilities must be a valid "
|
|
|
|
"floating-point matrix (CvMat) of 'nsamples' x 'nclusters' size" );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( params.means )
|
|
|
|
{
|
|
|
|
const CvMat* m = params.means;
|
|
|
|
if( !CV_IS_MAT(m) ||
|
|
|
|
(CV_MAT_TYPE(m->type) != CV_32FC1 &&
|
|
|
|
CV_MAT_TYPE(m->type) != CV_64FC1) ||
|
|
|
|
m->rows != params.nclusters ||
|
|
|
|
m->cols != train_data.dims )
|
|
|
|
CV_ERROR( CV_StsBadArg, "The array of mean's must be a valid "
|
|
|
|
"floating-point matrix (CvMat) of 'nsamples' x 'dims' size" );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( params.weights )
|
|
|
|
{
|
|
|
|
const CvMat* w = params.weights;
|
|
|
|
if( !CV_IS_MAT(w) ||
|
|
|
|
(CV_MAT_TYPE(w->type) != CV_32FC1 &&
|
|
|
|
CV_MAT_TYPE(w->type) != CV_64FC1) ||
|
|
|
|
(w->rows != 1 && w->cols != 1) ||
|
|
|
|
w->rows + w->cols - 1 != params.nclusters )
|
|
|
|
CV_ERROR( CV_StsBadArg, "The array of weights must be a valid "
|
|
|
|
"1d floating-point vector (CvMat) of 'nclusters' elements" );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( params.covs )
|
|
|
|
for( k = 0; k < params.nclusters; k++ )
|
|
|
|
{
|
|
|
|
const CvMat* cov = params.covs[k];
|
|
|
|
if( !CV_IS_MAT(cov) ||
|
|
|
|
(CV_MAT_TYPE(cov->type) != CV_32FC1 &&
|
|
|
|
CV_MAT_TYPE(cov->type) != CV_64FC1) ||
|
|
|
|
cov->rows != cov->cols || cov->cols != train_data.dims )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"Each of covariation matrices must be a valid square "
|
|
|
|
"floating-point matrix (CvMat) of 'dims' x 'dims'" );
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************/
|
|
|
|
float
|
|
|
|
CvEM::predict( const CvMat* _sample, CvMat* _probs ) const
|
|
|
|
{
|
|
|
|
float* sample_data = 0;
|
|
|
|
void* buffer = 0;
|
|
|
|
int allocated_buffer = 0;
|
|
|
|
int cls = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvEM::predict" );
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int i, k, dims;
|
|
|
|
int nclusters;
|
|
|
|
int cov_mat_type = params.cov_mat_type;
|
|
|
|
double opt = FLT_MAX;
|
|
|
|
size_t size;
|
|
|
|
CvMat diff, expo;
|
|
|
|
|
|
|
|
dims = means->cols;
|
|
|
|
nclusters = params.nclusters;
|
|
|
|
|
|
|
|
CV_CALL( cvPreparePredictData( _sample, dims, 0, params.nclusters, _probs, &sample_data ));
|
|
|
|
|
|
|
|
// allocate memory and initializing headers for calculating
|
|
|
|
size = sizeof(double) * (nclusters + dims);
|
|
|
|
if( size <= CV_MAX_LOCAL_SIZE )
|
|
|
|
buffer = cvStackAlloc( size );
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_CALL( buffer = cvAlloc( size ));
|
|
|
|
allocated_buffer = 1;
|
|
|
|
}
|
|
|
|
expo = cvMat( 1, nclusters, CV_64FC1, buffer );
|
|
|
|
diff = cvMat( 1, dims, CV_64FC1, (double*)buffer + nclusters );
|
|
|
|
|
|
|
|
// calculate the probabilities
|
|
|
|
for( k = 0; k < nclusters; k++ )
|
|
|
|
{
|
|
|
|
const double* mean_k = (const double*)(means->data.ptr + means->step*k);
|
|
|
|
const double* w = (const double*)(inv_eigen_values->data.ptr + inv_eigen_values->step*k);
|
|
|
|
double cur = log_weight_div_det->data.db[k];
|
|
|
|
CvMat* u = cov_rotate_mats[k];
|
|
|
|
// cov = u w u' --> cov^(-1) = u w^(-1) u'
|
|
|
|
if( cov_mat_type == COV_MAT_SPHERICAL )
|
|
|
|
{
|
|
|
|
double w0 = w[0];
|
|
|
|
for( i = 0; i < dims; i++ )
|
|
|
|
{
|
|
|
|
double val = sample_data[i] - mean_k[i];
|
|
|
|
cur += val*val*w0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( i = 0; i < dims; i++ )
|
|
|
|
diff.data.db[i] = sample_data[i] - mean_k[i];
|
|
|
|
if( cov_mat_type == COV_MAT_GENERIC )
|
|
|
|
cvGEMM( &diff, u, 1, 0, 0, &diff, CV_GEMM_B_T );
|
|
|
|
for( i = 0; i < dims; i++ )
|
|
|
|
{
|
|
|
|
double val = diff.data.db[i];
|
|
|
|
cur += val*val*w[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
expo.data.db[k] = cur;
|
|
|
|
if( cur < opt )
|
|
|
|
{
|
|
|
|
cls = k;
|
|
|
|
opt = cur;
|
|
|
|
}
|
|
|
|
/* probability = (2*pi)^(-dims/2)*exp( -0.5 * cur ) */
|
|
|
|
}
|
|
|
|
|
|
|
|
if( _probs )
|
|
|
|
{
|
|
|
|
CV_CALL( cvConvertScale( &expo, &expo, -0.5 ));
|
|
|
|
CV_CALL( cvExp( &expo, &expo ));
|
|
|
|
if( _probs->cols == 1 )
|
|
|
|
CV_CALL( cvReshape( &expo, &expo, 0, nclusters ));
|
|
|
|
CV_CALL( cvConvertScale( &expo, _probs, 1./cvSum( &expo ).val[0] ));
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
if( sample_data != _sample->data.fl )
|
|
|
|
cvFree( &sample_data );
|
|
|
|
if( allocated_buffer )
|
|
|
|
cvFree( &buffer );
|
|
|
|
|
|
|
|
return (float)cls;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool CvEM::train( const CvMat* _samples, const CvMat* _sample_idx,
|
|
|
|
CvEMParams _params, CvMat* labels )
|
|
|
|
{
|
|
|
|
bool result = false;
|
|
|
|
CvVectors train_data;
|
|
|
|
CvMat* sample_idx = 0;
|
|
|
|
|
|
|
|
train_data.data.fl = 0;
|
|
|
|
train_data.count = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME("cvEM");
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int i, nsamples, nclusters, dims;
|
|
|
|
|
|
|
|
clear();
|
|
|
|
|
|
|
|
CV_CALL( cvPrepareTrainData( "cvEM",
|
|
|
|
_samples, CV_ROW_SAMPLE, 0, CV_VAR_CATEGORICAL,
|
|
|
|
0, _sample_idx, false, (const float***)&train_data.data.fl,
|
|
|
|
&train_data.count, &train_data.dims, &train_data.dims,
|
|
|
|
0, 0, 0, &sample_idx ));
|
|
|
|
|
|
|
|
CV_CALL( set_params( _params, train_data ));
|
|
|
|
nsamples = train_data.count;
|
|
|
|
nclusters = params.nclusters;
|
|
|
|
dims = train_data.dims;
|
|
|
|
|
|
|
|
if( labels && (!CV_IS_MAT(labels) || CV_MAT_TYPE(labels->type) != CV_32SC1 ||
|
|
|
|
(labels->cols != 1 && labels->rows != 1) || labels->cols + labels->rows - 1 != nsamples ))
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"labels array (when passed) must be a valid 1d integer vector of <sample_count> elements" );
|
|
|
|
|
|
|
|
if( nsamples <= nclusters )
|
|
|
|
CV_ERROR( CV_StsOutOfRange,
|
|
|
|
"The number of samples should be greater than the number of clusters" );
|
|
|
|
|
|
|
|
CV_CALL( log_weight_div_det = cvCreateMat( 1, nclusters, CV_64FC1 ));
|
|
|
|
CV_CALL( probs = cvCreateMat( nsamples, nclusters, CV_64FC1 ));
|
|
|
|
CV_CALL( means = cvCreateMat( nclusters, dims, CV_64FC1 ));
|
|
|
|
CV_CALL( weights = cvCreateMat( 1, nclusters, CV_64FC1 ));
|
|
|
|
CV_CALL( inv_eigen_values = cvCreateMat( nclusters,
|
|
|
|
params.cov_mat_type == COV_MAT_SPHERICAL ? 1 : dims, CV_64FC1 ));
|
|
|
|
CV_CALL( covs = (CvMat**)cvAlloc( nclusters * sizeof(*covs) ));
|
|
|
|
CV_CALL( cov_rotate_mats = (CvMat**)cvAlloc( nclusters * sizeof(cov_rotate_mats[0]) ));
|
|
|
|
|
|
|
|
for( i = 0; i < nclusters; i++ )
|
|
|
|
{
|
|
|
|
CV_CALL( covs[i] = cvCreateMat( dims, dims, CV_64FC1 ));
|
|
|
|
CV_CALL( cov_rotate_mats[i] = cvCreateMat( dims, dims, CV_64FC1 ));
|
|
|
|
cvZero( cov_rotate_mats[i] );
|
|
|
|
}
|
|
|
|
|
|
|
|
init_em( train_data );
|
|
|
|
log_likelihood = run_em( train_data );
|
|
|
|
if( log_likelihood <= -DBL_MAX/10000. )
|
|
|
|
EXIT;
|
|
|
|
|
|
|
|
if( labels )
|
|
|
|
{
|
|
|
|
if( nclusters == 1 )
|
|
|
|
cvZero( labels );
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CvMat sample = cvMat( 1, dims, CV_32F );
|
|
|
|
CvMat prob = cvMat( 1, nclusters, CV_64F );
|
|
|
|
int lstep = CV_IS_MAT_CONT(labels->type) ? 1 : labels->step/sizeof(int);
|
|
|
|
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
int idx = sample_idx ? sample_idx->data.i[i] : i;
|
|
|
|
sample.data.ptr = _samples->data.ptr + _samples->step*idx;
|
|
|
|
prob.data.ptr = probs->data.ptr + probs->step*i;
|
|
|
|
|
|
|
|
labels->data.i[i*lstep] = cvRound(predict(&sample, &prob));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result = true;
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
if( sample_idx != _sample_idx )
|
|
|
|
cvReleaseMat( &sample_idx );
|
|
|
|
|
|
|
|
cvFree( &train_data.data.ptr );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvEM::init_em( const CvVectors& train_data )
|
|
|
|
{
|
|
|
|
CvMat *w = 0, *u = 0, *tcov = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvEM::init_em" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
double maxval = 0;
|
|
|
|
int i, force_symm_plus = 0;
|
|
|
|
int nclusters = params.nclusters, nsamples = train_data.count, dims = train_data.dims;
|
|
|
|
|
|
|
|
if( params.start_step == START_AUTO_STEP || nclusters == 1 || nclusters == nsamples )
|
|
|
|
init_auto( train_data );
|
|
|
|
else if( params.start_step == START_M_STEP )
|
|
|
|
{
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
CvMat prob;
|
|
|
|
cvGetRow( params.probs, &prob, i );
|
|
|
|
cvMaxS( &prob, 0., &prob );
|
|
|
|
cvMinMaxLoc( &prob, 0, &maxval );
|
|
|
|
if( maxval < FLT_EPSILON )
|
|
|
|
cvSet( &prob, cvScalar(1./nclusters) );
|
|
|
|
else
|
|
|
|
cvNormalize( &prob, &prob, 1., 0, CV_L1 );
|
|
|
|
}
|
|
|
|
EXIT; // do not preprocess covariation matrices,
|
|
|
|
// as in this case they are initialized at the first iteration of EM
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_ASSERT( params.start_step == START_E_STEP && params.means );
|
|
|
|
if( params.weights && params.covs )
|
|
|
|
{
|
|
|
|
cvConvert( params.means, means );
|
|
|
|
cvReshape( weights, weights, 1, params.weights->rows );
|
|
|
|
cvConvert( params.weights, weights );
|
|
|
|
cvReshape( weights, weights, 1, 1 );
|
|
|
|
cvMaxS( weights, 0., weights );
|
|
|
|
cvMinMaxLoc( weights, 0, &maxval );
|
|
|
|
if( maxval < FLT_EPSILON )
|
|
|
|
cvSet( weights, cvScalar(1./nclusters) );
|
|
|
|
cvNormalize( weights, weights, 1., 0, CV_L1 );
|
|
|
|
for( i = 0; i < nclusters; i++ )
|
|
|
|
CV_CALL( cvConvert( params.covs[i], covs[i] ));
|
|
|
|
force_symm_plus = 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
init_auto( train_data );
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_CALL( tcov = cvCreateMat( dims, dims, CV_64FC1 ));
|
|
|
|
CV_CALL( w = cvCreateMat( dims, dims, CV_64FC1 ));
|
|
|
|
if( params.cov_mat_type != COV_MAT_SPHERICAL )
|
|
|
|
CV_CALL( u = cvCreateMat( dims, dims, CV_64FC1 ));
|
|
|
|
|
|
|
|
for( i = 0; i < nclusters; i++ )
|
|
|
|
{
|
|
|
|
if( force_symm_plus )
|
|
|
|
{
|
|
|
|
cvTranspose( covs[i], tcov );
|
|
|
|
cvAddWeighted( covs[i], 0.5, tcov, 0.5, 0, tcov );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
cvCopy( covs[i], tcov );
|
|
|
|
cvSVD( tcov, w, u, 0, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T );
|
|
|
|
if( params.cov_mat_type == COV_MAT_SPHERICAL )
|
|
|
|
cvSetIdentity( covs[i], cvScalar(cvTrace(w).val[0]/dims) );
|
|
|
|
/*else if( params.cov_mat_type == COV_MAT_DIAGONAL )
|
|
|
|
cvCopy( w, covs[i] );*/
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// generic case: covs[i] = (u')'*max(w,0)*u'
|
|
|
|
cvGEMM( u, w, 1, 0, 0, tcov, CV_GEMM_A_T );
|
|
|
|
cvGEMM( tcov, u, 1, 0, 0, covs[i], 0 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
cvReleaseMat( &w );
|
|
|
|
cvReleaseMat( &u );
|
|
|
|
cvReleaseMat( &tcov );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvEM::init_auto( const CvVectors& train_data )
|
|
|
|
{
|
|
|
|
CvMat* hdr = 0;
|
|
|
|
const void** vec = 0;
|
|
|
|
CvMat* class_ranges = 0;
|
|
|
|
CvMat* labels = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvEM::init_auto" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int nclusters = params.nclusters, nsamples = train_data.count, dims = train_data.dims;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
if( nclusters == nsamples )
|
|
|
|
{
|
|
|
|
CvMat src = cvMat( 1, dims, CV_32F );
|
|
|
|
CvMat dst = cvMat( 1, dims, CV_64F );
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
src.data.ptr = train_data.data.ptr[i];
|
|
|
|
dst.data.ptr = means->data.ptr + means->step*i;
|
|
|
|
cvConvert( &src, &dst );
|
|
|
|
cvZero( covs[i] );
|
|
|
|
cvSetIdentity( cov_rotate_mats[i] );
|
|
|
|
}
|
|
|
|
cvSetIdentity( probs );
|
|
|
|
cvSet( weights, cvScalar(1./nclusters) );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int max_count = 0;
|
|
|
|
|
|
|
|
CV_CALL( class_ranges = cvCreateMat( 1, nclusters+1, CV_32SC1 ));
|
|
|
|
if( nclusters > 1 )
|
|
|
|
{
|
|
|
|
CV_CALL( labels = cvCreateMat( 1, nsamples, CV_32SC1 ));
|
|
|
|
kmeans( train_data, nclusters, labels, cvTermCriteria( CV_TERMCRIT_ITER,
|
|
|
|
params.means ? 1 : 10, 0.5 ), params.means );
|
|
|
|
CV_CALL( cvSortSamplesByClasses( (const float**)train_data.data.fl,
|
|
|
|
labels, class_ranges->data.i ));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
class_ranges->data.i[0] = 0;
|
|
|
|
class_ranges->data.i[1] = nsamples;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < nclusters; i++ )
|
|
|
|
{
|
|
|
|
int left = class_ranges->data.i[i], right = class_ranges->data.i[i+1];
|
|
|
|
max_count = MAX( max_count, right - left );
|
|
|
|
}
|
|
|
|
CV_CALL( hdr = (CvMat*)cvAlloc( max_count*sizeof(hdr[0]) ));
|
|
|
|
CV_CALL( vec = (const void**)cvAlloc( max_count*sizeof(vec[0]) ));
|
|
|
|
hdr[0] = cvMat( 1, dims, CV_32F );
|
|
|
|
for( i = 0; i < max_count; i++ )
|
|
|
|
{
|
|
|
|
vec[i] = hdr + i;
|
|
|
|
hdr[i] = hdr[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < nclusters; i++ )
|
|
|
|
{
|
|
|
|
int left = class_ranges->data.i[i], right = class_ranges->data.i[i+1];
|
|
|
|
int cluster_size = right - left;
|
|
|
|
CvMat avg;
|
|
|
|
|
|
|
|
if( cluster_size <= 0 )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for( j = left; j < right; j++ )
|
|
|
|
hdr[j - left].data.fl = train_data.data.fl[j];
|
|
|
|
|
|
|
|
CV_CALL( cvGetRow( means, &avg, i ));
|
|
|
|
CV_CALL( cvCalcCovarMatrix( vec, cluster_size, covs[i],
|
|
|
|
&avg, CV_COVAR_NORMAL | CV_COVAR_SCALE ));
|
|
|
|
weights->data.db[i] = (double)cluster_size/(double)nsamples;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
cvReleaseMat( &class_ranges );
|
|
|
|
cvReleaseMat( &labels );
|
|
|
|
cvFree( &hdr );
|
|
|
|
cvFree( &vec );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvEM::kmeans( const CvVectors& train_data, int nclusters, CvMat* labels,
|
|
|
|
CvTermCriteria termcrit, const CvMat* centers0 )
|
|
|
|
{
|
|
|
|
CvMat* centers = 0;
|
|
|
|
CvMat* old_centers = 0;
|
|
|
|
CvMat* counters = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvEM::kmeans" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
CvRNG rng = cvRNG(-1);
|
|
|
|
int i, j, k, nsamples, dims;
|
|
|
|
int iter = 0;
|
|
|
|
double max_dist = DBL_MAX;
|
|
|
|
|
|
|
|
termcrit = cvCheckTermCriteria( termcrit, 1e-6, 100 );
|
|
|
|
termcrit.epsilon *= termcrit.epsilon;
|
|
|
|
nsamples = train_data.count;
|
|
|
|
dims = train_data.dims;
|
|
|
|
nclusters = MIN( nclusters, nsamples );
|
|
|
|
|
|
|
|
CV_CALL( centers = cvCreateMat( nclusters, dims, CV_64FC1 ));
|
|
|
|
CV_CALL( old_centers = cvCreateMat( nclusters, dims, CV_64FC1 ));
|
|
|
|
CV_CALL( counters = cvCreateMat( 1, nclusters, CV_32SC1 ));
|
|
|
|
cvZero( old_centers );
|
|
|
|
|
|
|
|
if( centers0 )
|
|
|
|
{
|
|
|
|
CV_CALL( cvConvert( centers0, centers ));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
labels->data.i[i] = i*nclusters/nsamples;
|
|
|
|
cvRandShuffle( labels, &rng );
|
|
|
|
}
|
|
|
|
|
|
|
|
for( ;; )
|
|
|
|
{
|
|
|
|
CvMat* temp;
|
|
|
|
|
|
|
|
if( iter > 0 || centers0 )
|
|
|
|
{
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
const float* s = train_data.data.fl[i];
|
|
|
|
int k_best = 0;
|
|
|
|
double min_dist = DBL_MAX;
|
|
|
|
|
|
|
|
for( k = 0; k < nclusters; k++ )
|
|
|
|
{
|
|
|
|
const double* c = (double*)(centers->data.ptr + k*centers->step);
|
|
|
|
double dist = 0;
|
|
|
|
|
|
|
|
for( j = 0; j <= dims - 4; j += 4 )
|
|
|
|
{
|
|
|
|
double t0 = c[j] - s[j];
|
|
|
|
double t1 = c[j+1] - s[j+1];
|
|
|
|
dist += t0*t0 + t1*t1;
|
|
|
|
t0 = c[j+2] - s[j+2];
|
|
|
|
t1 = c[j+3] - s[j+3];
|
|
|
|
dist += t0*t0 + t1*t1;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( ; j < dims; j++ )
|
|
|
|
{
|
|
|
|
double t = c[j] - s[j];
|
|
|
|
dist += t*t;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( min_dist > dist )
|
|
|
|
{
|
|
|
|
min_dist = dist;
|
|
|
|
k_best = k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
labels->data.i[i] = k_best;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( ++iter > termcrit.max_iter )
|
|
|
|
break;
|
|
|
|
|
|
|
|
CV_SWAP( centers, old_centers, temp );
|
|
|
|
cvZero( centers );
|
|
|
|
cvZero( counters );
|
|
|
|
|
|
|
|
// update centers
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
const float* s = train_data.data.fl[i];
|
|
|
|
k = labels->data.i[i];
|
|
|
|
double* c = (double*)(centers->data.ptr + k*centers->step);
|
|
|
|
|
|
|
|
for( j = 0; j <= dims - 4; j += 4 )
|
|
|
|
{
|
|
|
|
double t0 = c[j] + s[j];
|
|
|
|
double t1 = c[j+1] + s[j+1];
|
|
|
|
|
|
|
|
c[j] = t0;
|
|
|
|
c[j+1] = t1;
|
|
|
|
|
|
|
|
t0 = c[j+2] + s[j+2];
|
|
|
|
t1 = c[j+3] + s[j+3];
|
|
|
|
|
|
|
|
c[j+2] = t0;
|
|
|
|
c[j+3] = t1;
|
|
|
|
}
|
|
|
|
for( ; j < dims; j++ )
|
|
|
|
c[j] += s[j];
|
|
|
|
counters->data.i[k]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( iter > 1 )
|
|
|
|
max_dist = 0;
|
|
|
|
|
|
|
|
for( k = 0; k < nclusters; k++ )
|
|
|
|
{
|
|
|
|
double* c = (double*)(centers->data.ptr + k*centers->step);
|
|
|
|
if( counters->data.i[k] != 0 )
|
|
|
|
{
|
|
|
|
double scale = 1./counters->data.i[k];
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
c[j] *= scale;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const float* s;
|
|
|
|
for( j = 0; j < 10; j++ )
|
|
|
|
{
|
|
|
|
i = cvRandInt( &rng ) % nsamples;
|
|
|
|
if( counters->data.i[labels->data.i[i]] > 1 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
s = train_data.data.fl[i];
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
c[j] = s[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
if( iter > 1 )
|
|
|
|
{
|
|
|
|
double dist = 0;
|
|
|
|
const double* c_o = (double*)(old_centers->data.ptr + k*old_centers->step);
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
{
|
|
|
|
double t = c[j] - c_o[j];
|
|
|
|
dist += t*t;
|
|
|
|
}
|
|
|
|
if( max_dist < dist )
|
|
|
|
max_dist = dist;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( max_dist < termcrit.epsilon )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
cvZero( counters );
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
counters->data.i[labels->data.i[i]]++;
|
|
|
|
|
|
|
|
// ensure that we do not have empty clusters
|
|
|
|
for( k = 0; k < nclusters; k++ )
|
|
|
|
if( counters->data.i[k] == 0 )
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
i = cvRandInt(&rng) % nsamples;
|
|
|
|
j = labels->data.i[i];
|
|
|
|
if( counters->data.i[j] > 1 )
|
|
|
|
{
|
|
|
|
labels->data.i[i] = k;
|
|
|
|
counters->data.i[j]--;
|
|
|
|
counters->data.i[k]++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
cvReleaseMat( ¢ers );
|
|
|
|
cvReleaseMat( &old_centers );
|
|
|
|
cvReleaseMat( &counters );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************/
|
|
|
|
/* log_weight_div_det[k] = -2*log(weights_k) + log(det(Sigma_k)))
|
|
|
|
|
|
|
|
covs[k] = cov_rotate_mats[k] * cov_eigen_values[k] * (cov_rotate_mats[k])'
|
|
|
|
cov_rotate_mats[k] are orthogonal matrices of eigenvectors and
|
|
|
|
cov_eigen_values[k] are diagonal matrices (represented by 1D vectors) of eigen values.
|
|
|
|
|
|
|
|
The <alpha_ik> is the probability of the vector x_i to belong to the k-th cluster:
|
|
|
|
<alpha_ik> ~ weights_k * exp{ -0.5[ln(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)] }
|
|
|
|
We calculate these probabilities here by the equivalent formulae:
|
|
|
|
Denote
|
|
|
|
S_ik = -0.5(log(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)) + log(weights_k),
|
|
|
|
M_i = max_k S_ik = S_qi, so that the q-th class is the one where maximum reaches. Then
|
|
|
|
alpha_ik = exp{ S_ik - M_i } / ( 1 + sum_j!=q exp{ S_ji - M_i })
|
|
|
|
*/
|
|
|
|
double CvEM::run_em( const CvVectors& train_data )
|
|
|
|
{
|
|
|
|
CvMat* centered_sample = 0;
|
|
|
|
CvMat* covs_item = 0;
|
|
|
|
CvMat* log_det = 0;
|
|
|
|
CvMat* log_weights = 0;
|
|
|
|
CvMat* cov_eigen_values = 0;
|
|
|
|
CvMat* samples = 0;
|
|
|
|
CvMat* sum_probs = 0;
|
|
|
|
log_likelihood = -DBL_MAX;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvEM::run_em" );
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int nsamples = train_data.count, dims = train_data.dims, nclusters = params.nclusters;
|
|
|
|
double min_variation = FLT_EPSILON;
|
|
|
|
double min_det_value = MAX( DBL_MIN, pow( min_variation, dims ));
|
|
|
|
double likelihood_bias = -CV_LOG2PI * (double)nsamples * (double)dims / 2., _log_likelihood = -DBL_MAX;
|
|
|
|
int start_step = params.start_step;
|
|
|
|
|
|
|
|
int i, j, k, n;
|
|
|
|
int is_general = 0, is_diagonal = 0, is_spherical = 0;
|
|
|
|
double prev_log_likelihood = -DBL_MAX / 1000., det, d;
|
|
|
|
CvMat whdr, iwhdr, diag, *w, *iw;
|
|
|
|
double* w_data;
|
|
|
|
double* sp_data;
|
|
|
|
|
|
|
|
if( nclusters == 1 )
|
|
|
|
{
|
|
|
|
double log_weight;
|
|
|
|
CV_CALL( cvSet( probs, cvScalar(1.)) );
|
|
|
|
|
|
|
|
if( params.cov_mat_type == COV_MAT_SPHERICAL )
|
|
|
|
{
|
|
|
|
d = cvTrace(*covs).val[0]/dims;
|
|
|
|
d = MAX( d, FLT_EPSILON );
|
|
|
|
inv_eigen_values->data.db[0] = 1./d;
|
|
|
|
log_weight = pow( d, dims*0.5 );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
w_data = inv_eigen_values->data.db;
|
|
|
|
|
|
|
|
if( params.cov_mat_type == COV_MAT_GENERIC )
|
|
|
|
cvSVD( *covs, inv_eigen_values, *cov_rotate_mats, 0, CV_SVD_U_T );
|
|
|
|
else
|
|
|
|
cvTranspose( cvGetDiag(*covs, &diag), inv_eigen_values );
|
|
|
|
|
|
|
|
cvMaxS( inv_eigen_values, FLT_EPSILON, inv_eigen_values );
|
|
|
|
for( j = 0, det = 1.; j < dims; j++ )
|
|
|
|
det *= w_data[j];
|
|
|
|
log_weight = sqrt(det);
|
|
|
|
cvDiv( 0, inv_eigen_values, inv_eigen_values );
|
|
|
|
}
|
|
|
|
|
|
|
|
log_weight_div_det->data.db[0] = -2*log(weights->data.db[0]/log_weight);
|
|
|
|
log_likelihood = DBL_MAX/1000.;
|
|
|
|
EXIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( params.cov_mat_type == COV_MAT_GENERIC )
|
|
|
|
is_general = 1;
|
|
|
|
else if( params.cov_mat_type == COV_MAT_DIAGONAL )
|
|
|
|
is_diagonal = 1;
|
|
|
|
else if( params.cov_mat_type == COV_MAT_SPHERICAL )
|
|
|
|
is_spherical = 1;
|
|
|
|
/* In the case of <cov_mat_type> == COV_MAT_DIAGONAL, the k-th row of cov_eigen_values
|
|
|
|
contains the diagonal elements (variations). In the case of
|
|
|
|
<cov_mat_type> == COV_MAT_SPHERICAL - the 0-ths elements of the vectors cov_eigen_values[k]
|
|
|
|
are to be equal to the mean of the variations over all the dimensions. */
|
|
|
|
|
|
|
|
CV_CALL( log_det = cvCreateMat( 1, nclusters, CV_64FC1 ));
|
|
|
|
CV_CALL( log_weights = cvCreateMat( 1, nclusters, CV_64FC1 ));
|
|
|
|
CV_CALL( covs_item = cvCreateMat( dims, dims, CV_64FC1 ));
|
|
|
|
CV_CALL( centered_sample = cvCreateMat( 1, dims, CV_64FC1 ));
|
|
|
|
CV_CALL( cov_eigen_values = cvCreateMat( inv_eigen_values->rows, inv_eigen_values->cols, CV_64FC1 ));
|
|
|
|
CV_CALL( samples = cvCreateMat( nsamples, dims, CV_64FC1 ));
|
|
|
|
CV_CALL( sum_probs = cvCreateMat( 1, nclusters, CV_64FC1 ));
|
|
|
|
sp_data = sum_probs->data.db;
|
|
|
|
|
|
|
|
// copy the training data into double-precision matrix
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
const float* src = train_data.data.fl[i];
|
|
|
|
double* dst = (double*)(samples->data.ptr + samples->step*i);
|
|
|
|
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
dst[j] = src[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
if( start_step != START_M_STEP )
|
|
|
|
{
|
|
|
|
for( k = 0; k < nclusters; k++ )
|
|
|
|
{
|
|
|
|
if( is_general || is_diagonal )
|
|
|
|
{
|
|
|
|
w = cvGetRow( cov_eigen_values, &whdr, k );
|
|
|
|
if( is_general )
|
|
|
|
cvSVD( covs[k], w, cov_rotate_mats[k], 0, CV_SVD_U_T );
|
|
|
|
else
|
|
|
|
cvTranspose( cvGetDiag( covs[k], &diag ), w );
|
|
|
|
w_data = w->data.db;
|
|
|
|
for( j = 0, det = 1.; j < dims; j++ )
|
|
|
|
det *= w_data[j];
|
|
|
|
if( det < min_det_value )
|
|
|
|
{
|
|
|
|
if( start_step == START_AUTO_STEP )
|
|
|
|
det = min_det_value;
|
|
|
|
else
|
|
|
|
EXIT;
|
|
|
|
}
|
|
|
|
log_det->data.db[k] = det;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
d = cvTrace(covs[k]).val[0]/(double)dims;
|
|
|
|
if( d < min_variation )
|
|
|
|
{
|
|
|
|
if( start_step == START_AUTO_STEP )
|
|
|
|
d = min_variation;
|
|
|
|
else
|
|
|
|
EXIT;
|
|
|
|
}
|
|
|
|
cov_eigen_values->data.db[k] = d;
|
|
|
|
log_det->data.db[k] = d;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cvLog( log_det, log_det );
|
|
|
|
if( is_spherical )
|
|
|
|
cvScale( log_det, log_det, dims );
|
|
|
|
}
|
|
|
|
|
|
|
|
for( n = 0; n < params.term_crit.max_iter; n++ )
|
|
|
|
{
|
|
|
|
if( n > 0 || start_step != START_M_STEP )
|
|
|
|
{
|
|
|
|
// e-step: compute probs_ik from means_k, covs_k and weights_k.
|
|
|
|
CV_CALL(cvLog( weights, log_weights ));
|
|
|
|
|
|
|
|
// S_ik = -0.5[log(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)] + log(weights_k)
|
|
|
|
for( k = 0; k < nclusters; k++ )
|
|
|
|
{
|
|
|
|
CvMat* u = cov_rotate_mats[k];
|
|
|
|
const double* mean = (double*)(means->data.ptr + means->step*k);
|
|
|
|
w = cvGetRow( cov_eigen_values, &whdr, k );
|
|
|
|
iw = cvGetRow( inv_eigen_values, &iwhdr, k );
|
|
|
|
cvDiv( 0, w, iw );
|
|
|
|
|
|
|
|
w_data = (double*)(inv_eigen_values->data.ptr + inv_eigen_values->step*k);
|
|
|
|
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
double *csample = centered_sample->data.db, p = log_det->data.db[k];
|
|
|
|
const double* sample = (double*)(samples->data.ptr + samples->step*i);
|
|
|
|
double* pp = (double*)(probs->data.ptr + probs->step*i);
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
csample[j] = sample[j] - mean[j];
|
|
|
|
if( is_general )
|
|
|
|
cvGEMM( centered_sample, u, 1, 0, 0, centered_sample, CV_GEMM_B_T );
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
p += csample[j]*csample[j]*w_data[is_spherical ? 0 : j];
|
|
|
|
pp[k] = -0.5*p + log_weights->data.db[k];
|
|
|
|
|
|
|
|
// S_ik <- S_ik - max_j S_ij
|
|
|
|
if( k == nclusters - 1 )
|
|
|
|
{
|
|
|
|
double max_val = 0;
|
|
|
|
for( j = 0; j < nclusters; j++ )
|
|
|
|
max_val = MAX( max_val, pp[j] );
|
|
|
|
for( j = 0; j < nclusters; j++ )
|
|
|
|
pp[j] -= max_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_CALL(cvExp( probs, probs )); // exp( S_ik )
|
|
|
|
cvZero( sum_probs );
|
|
|
|
|
|
|
|
// alpha_ik = exp( S_ik ) / sum_j exp( S_ij ),
|
|
|
|
// log_likelihood = sum_i log (sum_j exp(S_ij))
|
|
|
|
for( i = 0, _log_likelihood = likelihood_bias; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
double* pp = (double*)(probs->data.ptr + probs->step*i), sum = 0;
|
|
|
|
for( j = 0; j < nclusters; j++ )
|
|
|
|
sum += pp[j];
|
|
|
|
sum = 1./MAX( sum, DBL_EPSILON );
|
|
|
|
for( j = 0; j < nclusters; j++ )
|
|
|
|
{
|
|
|
|
double p = pp[j] *= sum;
|
|
|
|
sp_data[j] += p;
|
|
|
|
}
|
|
|
|
_log_likelihood -= log( sum );
|
|
|
|
}
|
|
|
|
|
|
|
|
// check termination criteria
|
|
|
|
if( fabs( (_log_likelihood - prev_log_likelihood) / prev_log_likelihood ) < params.term_crit.epsilon )
|
|
|
|
break;
|
|
|
|
prev_log_likelihood = _log_likelihood;
|
|
|
|
}
|
|
|
|
|
|
|
|
// m-step: update means_k, covs_k and weights_k from probs_ik
|
|
|
|
cvGEMM( probs, samples, 1, 0, 0, means, CV_GEMM_A_T );
|
|
|
|
|
|
|
|
for( k = 0; k < nclusters; k++ )
|
|
|
|
{
|
|
|
|
double sum = sp_data[k], inv_sum = 1./sum;
|
|
|
|
CvMat* cov = covs[k], _mean, _sample;
|
|
|
|
|
|
|
|
w = cvGetRow( cov_eigen_values, &whdr, k );
|
|
|
|
w_data = w->data.db;
|
|
|
|
cvGetRow( means, &_mean, k );
|
|
|
|
cvGetRow( samples, &_sample, k );
|
|
|
|
|
|
|
|
// update weights_k
|
|
|
|
weights->data.db[k] = sum;
|
|
|
|
|
|
|
|
// update means_k
|
|
|
|
cvScale( &_mean, &_mean, inv_sum );
|
|
|
|
|
|
|
|
// compute covs_k
|
|
|
|
cvZero( cov );
|
|
|
|
cvZero( w );
|
|
|
|
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
double p = probs->data.db[i*nclusters + k]*inv_sum;
|
|
|
|
_sample.data.db = (double*)(samples->data.ptr + samples->step*i);
|
|
|
|
|
|
|
|
if( is_general )
|
|
|
|
{
|
|
|
|
cvMulTransposed( &_sample, covs_item, 1, &_mean );
|
|
|
|
cvScaleAdd( covs_item, cvRealScalar(p), cov, cov );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
{
|
|
|
|
double val = _sample.data.db[j] - _mean.data.db[j];
|
|
|
|
w_data[is_spherical ? 0 : j] += p*val*val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( is_spherical )
|
|
|
|
{
|
|
|
|
d = w_data[0]/(double)dims;
|
|
|
|
d = MAX( d, min_variation );
|
|
|
|
w->data.db[0] = d;
|
|
|
|
log_det->data.db[k] = d;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if( is_general )
|
|
|
|
cvSVD( cov, w, cov_rotate_mats[k], 0, CV_SVD_U_T );
|
|
|
|
cvMaxS( w, min_variation, w );
|
|
|
|
for( j = 0, det = 1.; j < dims; j++ )
|
|
|
|
det *= w_data[j];
|
|
|
|
log_det->data.db[k] = det;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cvConvertScale( weights, weights, 1./(double)nsamples, 0 );
|
|
|
|
cvMaxS( weights, DBL_MIN, weights );
|
|
|
|
|
|
|
|
cvLog( log_det, log_det );
|
|
|
|
if( is_spherical )
|
|
|
|
cvScale( log_det, log_det, dims );
|
|
|
|
} // end of iteration process
|
|
|
|
|
|
|
|
//log_weight_div_det[k] = -2*log(weights_k/det(Sigma_k))^0.5) = -2*log(weights_k) + log(det(Sigma_k)))
|
|
|
|
if( log_weight_div_det )
|
|
|
|
{
|
|
|
|
cvScale( log_weights, log_weight_div_det, -2 );
|
|
|
|
cvAdd( log_weight_div_det, log_det, log_weight_div_det );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now finalize all the covariation matrices:
|
|
|
|
1) if <cov_mat_type> == COV_MAT_DIAGONAL we used array of <w> as diagonals.
|
|
|
|
Now w[k] should be copied back to the diagonals of covs[k];
|
|
|
|
2) if <cov_mat_type> == COV_MAT_SPHERICAL we used the 0-th element of w[k]
|
|
|
|
as an average variation in each cluster. The value of the 0-th element of w[k]
|
|
|
|
should be copied to the all of the diagonal elements of covs[k]. */
|
|
|
|
if( is_spherical )
|
|
|
|
{
|
|
|
|
for( k = 0; k < nclusters; k++ )
|
|
|
|
cvSetIdentity( covs[k], cvScalar(cov_eigen_values->data.db[k]));
|
|
|
|
}
|
|
|
|
else if( is_diagonal )
|
|
|
|
{
|
|
|
|
for( k = 0; k < nclusters; k++ )
|
|
|
|
cvTranspose( cvGetRow( cov_eigen_values, &whdr, k ),
|
|
|
|
cvGetDiag( covs[k], &diag ));
|
|
|
|
}
|
|
|
|
cvDiv( 0, cov_eigen_values, inv_eigen_values );
|
|
|
|
|
|
|
|
log_likelihood = _log_likelihood;
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
cvReleaseMat( &log_det );
|
|
|
|
cvReleaseMat( &log_weights );
|
|
|
|
cvReleaseMat( &covs_item );
|
|
|
|
cvReleaseMat( ¢ered_sample );
|
|
|
|
cvReleaseMat( &cov_eigen_values );
|
|
|
|
cvReleaseMat( &samples );
|
|
|
|
cvReleaseMat( &sum_probs );
|
|
|
|
|
|
|
|
return log_likelihood;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CvEM::get_nclusters() const
|
|
|
|
{
|
|
|
|
return params.nclusters;
|
|
|
|
}
|
|
|
|
|
|
|
|
const CvMat* CvEM::get_means() const
|
|
|
|
{
|
|
|
|
return means;
|
|
|
|
}
|
|
|
|
|
|
|
|
const CvMat** CvEM::get_covs() const
|
|
|
|
{
|
|
|
|
return (const CvMat**)covs;
|
|
|
|
}
|
|
|
|
|
|
|
|
const CvMat* CvEM::get_weights() const
|
|
|
|
{
|
|
|
|
return weights;
|
|
|
|
}
|
|
|
|
|
|
|
|
const CvMat* CvEM::get_probs() const
|
|
|
|
{
|
|
|
|
return probs;
|
|
|
|
}
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
|
2010-11-02 17:58:22 +00:00
|
|
|
CvEM::CvEM( const Mat& samples, const Mat& sample_idx, CvEMParams params )
|
2010-05-11 17:44:00 +00:00
|
|
|
{
|
|
|
|
means = weights = probs = inv_eigen_values = log_weight_div_det = 0;
|
|
|
|
covs = cov_rotate_mats = 0;
|
|
|
|
|
|
|
|
// just invoke the train() method
|
2010-11-02 17:58:22 +00:00
|
|
|
train(samples, sample_idx, params);
|
2010-05-11 17:44:00 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
|
|
|
|
CvEMParams _params, Mat* _labels )
|
|
|
|
{
|
|
|
|
CvMat samples = _samples, sidx = _sample_idx, labels, *plabels = 0;
|
|
|
|
|
|
|
|
if( _labels )
|
|
|
|
{
|
|
|
|
int nsamples = sidx.data.ptr ? sidx.rows : samples.rows;
|
|
|
|
|
|
|
|
if( !(_labels->data && _labels->type() == CV_32SC1 &&
|
|
|
|
(_labels->cols == 1 || _labels->rows == 1) &&
|
|
|
|
_labels->cols + _labels->rows - 1 == nsamples) )
|
|
|
|
_labels->create(nsamples, 1, CV_32SC1);
|
|
|
|
plabels = &(labels = *_labels);
|
|
|
|
}
|
|
|
|
return train(&samples, sidx.data.ptr ? &sidx : 0, _params, plabels);
|
|
|
|
}
|
|
|
|
|
|
|
|
float
|
|
|
|
CvEM::predict( const Mat& _sample, Mat* _probs ) const
|
|
|
|
{
|
|
|
|
CvMat sample = _sample, probs, *pprobs = 0;
|
|
|
|
|
|
|
|
if( _probs )
|
|
|
|
{
|
|
|
|
int nclusters = params.nclusters;
|
|
|
|
if(!(_probs->data && (_probs->type() == CV_32F || _probs->type()==CV_64F) &&
|
|
|
|
(_probs->cols == 1 || _probs->rows == 1) &&
|
|
|
|
_probs->cols + _probs->rows - 1 == nclusters))
|
|
|
|
_probs->create(nclusters, 1, _sample.type());
|
|
|
|
pprobs = &(probs = *_probs);
|
|
|
|
}
|
|
|
|
return predict(&sample, pprobs);
|
|
|
|
}
|
|
|
|
|
2010-11-02 17:58:22 +00:00
|
|
|
int CvEM::getNClusters() const
|
|
|
|
{
|
|
|
|
return params.nclusters;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat CvEM::getMeans() const
|
|
|
|
{
|
|
|
|
return Mat(means);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CvEM::getCovs(vector<Mat>& _covs) const
|
|
|
|
{
|
|
|
|
int i, n = params.nclusters;
|
|
|
|
_covs.resize(n);
|
|
|
|
for( i = 0; i < n; i++ )
|
|
|
|
_covs[i] = Mat(covs[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat CvEM::getWeights() const
|
|
|
|
{
|
|
|
|
return Mat(weights);
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat CvEM::getProbs() const
|
|
|
|
{
|
|
|
|
return Mat(probs);
|
|
|
|
}
|
|
|
|
|
2010-05-11 17:44:00 +00:00
|
|
|
|
|
|
|
/* End of file. */
|