opencv/modules/ml/src/em.cpp

1186 lines
38 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright( C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
//(including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort(including negligence or otherwise) arising in any way out of
// the use of this software, even ifadvised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/*
CvEM:
* params.nclusters - number of clusters to cluster samples to.
* means - calculated by the EM algorithm set of gaussians' means.
* log_weight_div_det - auxilary vector that k-th component is equal to
(-2)*ln(weights_k/det(Sigma_k)^0.5),
where <weights_k> is the weight,
<Sigma_k> is the covariation matrice of k-th cluster.
* inv_eigen_values - set of 1*dims matrices, <inv_eigen_values>[k] contains
inversed eigen values of covariation matrice of the k-th cluster.
In the case of <cov_mat_type> == COV_MAT_DIAGONAL,
inv_eigen_values[k] = Sigma_k^(-1).
* covs_rotate_mats - used only if cov_mat_type == COV_MAT_GENERIC, in all the
other cases it is NULL. <covs_rotate_mats>[k] is the orthogonal
matrice, obtained by the SVD-decomposition of Sigma_k.
Both <inv_eigen_values> and <covs_rotate_mats> fields are used for representation of
covariation matrices and simplifying EM calculations.
For fixed k denote
u = covs_rotate_mats[k],
v = inv_eigen_values[k],
w = v^(-1);
if <cov_mat_type> == COV_MAT_GENERIC, then Sigma_k = u w u',
else Sigma_k = w.
Symbol ' means transposition.
*/
CvEM::CvEM()
{
means = weights = probs = inv_eigen_values = log_weight_div_det = 0;
covs = cov_rotate_mats = 0;
}
CvEM::CvEM( const CvMat* samples, const CvMat* sample_idx,
CvEMParams params, CvMat* labels )
{
means = weights = probs = inv_eigen_values = log_weight_div_det = 0;
covs = cov_rotate_mats = 0;
// just invoke the train() method
train(samples, sample_idx, params, labels);
}
CvEM::~CvEM()
{
clear();
}
void CvEM::clear()
{
int i;
cvReleaseMat( &means );
cvReleaseMat( &weights );
cvReleaseMat( &probs );
cvReleaseMat( &inv_eigen_values );
cvReleaseMat( &log_weight_div_det );
if( covs || cov_rotate_mats )
{
for( i = 0; i < params.nclusters; i++ )
{
if( covs )
cvReleaseMat( &covs[i] );
if( cov_rotate_mats )
cvReleaseMat( &cov_rotate_mats[i] );
}
cvFree( &covs );
cvFree( &cov_rotate_mats );
}
}
void CvEM::set_params( const CvEMParams& _params, const CvVectors& train_data )
{
CV_FUNCNAME( "CvEM::set_params" );
__BEGIN__;
int k;
params = _params;
params.term_crit = cvCheckTermCriteria( params.term_crit, 1e-6, 10000 );
if( params.cov_mat_type != COV_MAT_SPHERICAL &&
params.cov_mat_type != COV_MAT_DIAGONAL &&
params.cov_mat_type != COV_MAT_GENERIC )
CV_ERROR( CV_StsBadArg, "Unknown covariation matrix type" );
switch( params.start_step )
{
case START_M_STEP:
if( !params.probs )
CV_ERROR( CV_StsNullPtr, "Probabilities must be specified when EM algorithm starts with M-step" );
break;
case START_E_STEP:
if( !params.means )
CV_ERROR( CV_StsNullPtr, "Mean's must be specified when EM algorithm starts with E-step" );
break;
case START_AUTO_STEP:
break;
default:
CV_ERROR( CV_StsBadArg, "Unknown start_step" );
}
if( params.nclusters < 1 )
CV_ERROR( CV_StsOutOfRange, "The number of clusters (mixtures) should be > 0" );
if( params.probs )
{
const CvMat* p = params.probs;
if( !CV_IS_MAT(p) ||
(CV_MAT_TYPE(p->type) != CV_32FC1 &&
CV_MAT_TYPE(p->type) != CV_64FC1) ||
p->rows != train_data.count ||
p->cols != params.nclusters )
CV_ERROR( CV_StsBadArg, "The array of probabilities must be a valid "
"floating-point matrix (CvMat) of 'nsamples' x 'nclusters' size" );
}
if( params.means )
{
const CvMat* m = params.means;
if( !CV_IS_MAT(m) ||
(CV_MAT_TYPE(m->type) != CV_32FC1 &&
CV_MAT_TYPE(m->type) != CV_64FC1) ||
m->rows != params.nclusters ||
m->cols != train_data.dims )
CV_ERROR( CV_StsBadArg, "The array of mean's must be a valid "
"floating-point matrix (CvMat) of 'nsamples' x 'dims' size" );
}
if( params.weights )
{
const CvMat* w = params.weights;
if( !CV_IS_MAT(w) ||
(CV_MAT_TYPE(w->type) != CV_32FC1 &&
CV_MAT_TYPE(w->type) != CV_64FC1) ||
(w->rows != 1 && w->cols != 1) ||
w->rows + w->cols - 1 != params.nclusters )
CV_ERROR( CV_StsBadArg, "The array of weights must be a valid "
"1d floating-point vector (CvMat) of 'nclusters' elements" );
}
if( params.covs )
for( k = 0; k < params.nclusters; k++ )
{
const CvMat* cov = params.covs[k];
if( !CV_IS_MAT(cov) ||
(CV_MAT_TYPE(cov->type) != CV_32FC1 &&
CV_MAT_TYPE(cov->type) != CV_64FC1) ||
cov->rows != cov->cols || cov->cols != train_data.dims )
CV_ERROR( CV_StsBadArg,
"Each of covariation matrices must be a valid square "
"floating-point matrix (CvMat) of 'dims' x 'dims'" );
}
__END__;
}
/****************************************************************************************/
float
CvEM::predict( const CvMat* _sample, CvMat* _probs ) const
{
float* sample_data = 0;
void* buffer = 0;
int allocated_buffer = 0;
int cls = 0;
CV_FUNCNAME( "CvEM::predict" );
__BEGIN__;
int i, k, dims;
int nclusters;
int cov_mat_type = params.cov_mat_type;
double opt = FLT_MAX;
size_t size;
CvMat diff, expo;
dims = means->cols;
nclusters = params.nclusters;
CV_CALL( cvPreparePredictData( _sample, dims, 0, params.nclusters, _probs, &sample_data ));
// allocate memory and initializing headers for calculating
size = sizeof(double) * (nclusters + dims);
if( size <= CV_MAX_LOCAL_SIZE )
buffer = cvStackAlloc( size );
else
{
CV_CALL( buffer = cvAlloc( size ));
allocated_buffer = 1;
}
expo = cvMat( 1, nclusters, CV_64FC1, buffer );
diff = cvMat( 1, dims, CV_64FC1, (double*)buffer + nclusters );
// calculate the probabilities
for( k = 0; k < nclusters; k++ )
{
const double* mean_k = (const double*)(means->data.ptr + means->step*k);
const double* w = (const double*)(inv_eigen_values->data.ptr + inv_eigen_values->step*k);
double cur = log_weight_div_det->data.db[k];
CvMat* u = cov_rotate_mats[k];
// cov = u w u' --> cov^(-1) = u w^(-1) u'
if( cov_mat_type == COV_MAT_SPHERICAL )
{
double w0 = w[0];
for( i = 0; i < dims; i++ )
{
double val = sample_data[i] - mean_k[i];
cur += val*val*w0;
}
}
else
{
for( i = 0; i < dims; i++ )
diff.data.db[i] = sample_data[i] - mean_k[i];
if( cov_mat_type == COV_MAT_GENERIC )
cvGEMM( &diff, u, 1, 0, 0, &diff, CV_GEMM_B_T );
for( i = 0; i < dims; i++ )
{
double val = diff.data.db[i];
cur += val*val*w[i];
}
}
expo.data.db[k] = cur;
if( cur < opt )
{
cls = k;
opt = cur;
}
/* probability = (2*pi)^(-dims/2)*exp( -0.5 * cur ) */
}
if( _probs )
{
CV_CALL( cvConvertScale( &expo, &expo, -0.5 ));
CV_CALL( cvExp( &expo, &expo ));
if( _probs->cols == 1 )
CV_CALL( cvReshape( &expo, &expo, 0, nclusters ));
CV_CALL( cvConvertScale( &expo, _probs, 1./cvSum( &expo ).val[0] ));
}
__END__;
if( sample_data != _sample->data.fl )
cvFree( &sample_data );
if( allocated_buffer )
cvFree( &buffer );
return (float)cls;
}
bool CvEM::train( const CvMat* _samples, const CvMat* _sample_idx,
CvEMParams _params, CvMat* labels )
{
bool result = false;
CvVectors train_data;
CvMat* sample_idx = 0;
train_data.data.fl = 0;
train_data.count = 0;
CV_FUNCNAME("cvEM");
__BEGIN__;
int i, nsamples, nclusters, dims;
clear();
CV_CALL( cvPrepareTrainData( "cvEM",
_samples, CV_ROW_SAMPLE, 0, CV_VAR_CATEGORICAL,
0, _sample_idx, false, (const float***)&train_data.data.fl,
&train_data.count, &train_data.dims, &train_data.dims,
0, 0, 0, &sample_idx ));
CV_CALL( set_params( _params, train_data ));
nsamples = train_data.count;
nclusters = params.nclusters;
dims = train_data.dims;
if( labels && (!CV_IS_MAT(labels) || CV_MAT_TYPE(labels->type) != CV_32SC1 ||
(labels->cols != 1 && labels->rows != 1) || labels->cols + labels->rows - 1 != nsamples ))
CV_ERROR( CV_StsBadArg,
"labels array (when passed) must be a valid 1d integer vector of <sample_count> elements" );
if( nsamples <= nclusters )
CV_ERROR( CV_StsOutOfRange,
"The number of samples should be greater than the number of clusters" );
CV_CALL( log_weight_div_det = cvCreateMat( 1, nclusters, CV_64FC1 ));
CV_CALL( probs = cvCreateMat( nsamples, nclusters, CV_64FC1 ));
CV_CALL( means = cvCreateMat( nclusters, dims, CV_64FC1 ));
CV_CALL( weights = cvCreateMat( 1, nclusters, CV_64FC1 ));
CV_CALL( inv_eigen_values = cvCreateMat( nclusters,
params.cov_mat_type == COV_MAT_SPHERICAL ? 1 : dims, CV_64FC1 ));
CV_CALL( covs = (CvMat**)cvAlloc( nclusters * sizeof(*covs) ));
CV_CALL( cov_rotate_mats = (CvMat**)cvAlloc( nclusters * sizeof(cov_rotate_mats[0]) ));
for( i = 0; i < nclusters; i++ )
{
CV_CALL( covs[i] = cvCreateMat( dims, dims, CV_64FC1 ));
CV_CALL( cov_rotate_mats[i] = cvCreateMat( dims, dims, CV_64FC1 ));
cvZero( cov_rotate_mats[i] );
}
init_em( train_data );
log_likelihood = run_em( train_data );
if( log_likelihood <= -DBL_MAX/10000. )
EXIT;
if( labels )
{
if( nclusters == 1 )
cvZero( labels );
else
{
CvMat sample = cvMat( 1, dims, CV_32F );
CvMat prob = cvMat( 1, nclusters, CV_64F );
int lstep = CV_IS_MAT_CONT(labels->type) ? 1 : labels->step/sizeof(int);
for( i = 0; i < nsamples; i++ )
{
int idx = sample_idx ? sample_idx->data.i[i] : i;
sample.data.ptr = _samples->data.ptr + _samples->step*idx;
prob.data.ptr = probs->data.ptr + probs->step*i;
labels->data.i[i*lstep] = cvRound(predict(&sample, &prob));
}
}
}
result = true;
__END__;
if( sample_idx != _sample_idx )
cvReleaseMat( &sample_idx );
cvFree( &train_data.data.ptr );
return result;
}
void CvEM::init_em( const CvVectors& train_data )
{
CvMat *w = 0, *u = 0, *tcov = 0;
CV_FUNCNAME( "CvEM::init_em" );
__BEGIN__;
double maxval = 0;
int i, force_symm_plus = 0;
int nclusters = params.nclusters, nsamples = train_data.count, dims = train_data.dims;
if( params.start_step == START_AUTO_STEP || nclusters == 1 || nclusters == nsamples )
init_auto( train_data );
else if( params.start_step == START_M_STEP )
{
for( i = 0; i < nsamples; i++ )
{
CvMat prob;
cvGetRow( params.probs, &prob, i );
cvMaxS( &prob, 0., &prob );
cvMinMaxLoc( &prob, 0, &maxval );
if( maxval < FLT_EPSILON )
cvSet( &prob, cvScalar(1./nclusters) );
else
cvNormalize( &prob, &prob, 1., 0, CV_L1 );
}
EXIT; // do not preprocess covariation matrices,
// as in this case they are initialized at the first iteration of EM
}
else
{
CV_ASSERT( params.start_step == START_E_STEP && params.means );
if( params.weights && params.covs )
{
cvConvert( params.means, means );
cvReshape( weights, weights, 1, params.weights->rows );
cvConvert( params.weights, weights );
cvReshape( weights, weights, 1, 1 );
cvMaxS( weights, 0., weights );
cvMinMaxLoc( weights, 0, &maxval );
if( maxval < FLT_EPSILON )
cvSet( weights, cvScalar(1./nclusters) );
cvNormalize( weights, weights, 1., 0, CV_L1 );
for( i = 0; i < nclusters; i++ )
CV_CALL( cvConvert( params.covs[i], covs[i] ));
force_symm_plus = 1;
}
else
init_auto( train_data );
}
CV_CALL( tcov = cvCreateMat( dims, dims, CV_64FC1 ));
CV_CALL( w = cvCreateMat( dims, dims, CV_64FC1 ));
if( params.cov_mat_type != COV_MAT_SPHERICAL )
CV_CALL( u = cvCreateMat( dims, dims, CV_64FC1 ));
for( i = 0; i < nclusters; i++ )
{
if( force_symm_plus )
{
cvTranspose( covs[i], tcov );
cvAddWeighted( covs[i], 0.5, tcov, 0.5, 0, tcov );
}
else
cvCopy( covs[i], tcov );
cvSVD( tcov, w, u, 0, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T );
if( params.cov_mat_type == COV_MAT_SPHERICAL )
cvSetIdentity( covs[i], cvScalar(cvTrace(w).val[0]/dims) );
/*else if( params.cov_mat_type == COV_MAT_DIAGONAL )
cvCopy( w, covs[i] );*/
else
{
// generic case: covs[i] = (u')'*max(w,0)*u'
cvGEMM( u, w, 1, 0, 0, tcov, CV_GEMM_A_T );
cvGEMM( tcov, u, 1, 0, 0, covs[i], 0 );
}
}
__END__;
cvReleaseMat( &w );
cvReleaseMat( &u );
cvReleaseMat( &tcov );
}
void CvEM::init_auto( const CvVectors& train_data )
{
CvMat* hdr = 0;
const void** vec = 0;
CvMat* class_ranges = 0;
CvMat* labels = 0;
CV_FUNCNAME( "CvEM::init_auto" );
__BEGIN__;
int nclusters = params.nclusters, nsamples = train_data.count, dims = train_data.dims;
int i, j;
if( nclusters == nsamples )
{
CvMat src = cvMat( 1, dims, CV_32F );
CvMat dst = cvMat( 1, dims, CV_64F );
for( i = 0; i < nsamples; i++ )
{
src.data.ptr = train_data.data.ptr[i];
dst.data.ptr = means->data.ptr + means->step*i;
cvConvert( &src, &dst );
cvZero( covs[i] );
cvSetIdentity( cov_rotate_mats[i] );
}
cvSetIdentity( probs );
cvSet( weights, cvScalar(1./nclusters) );
}
else
{
int max_count = 0;
CV_CALL( class_ranges = cvCreateMat( 1, nclusters+1, CV_32SC1 ));
if( nclusters > 1 )
{
CV_CALL( labels = cvCreateMat( 1, nsamples, CV_32SC1 ));
kmeans( train_data, nclusters, labels, cvTermCriteria( CV_TERMCRIT_ITER,
params.means ? 1 : 10, 0.5 ), params.means );
CV_CALL( cvSortSamplesByClasses( (const float**)train_data.data.fl,
labels, class_ranges->data.i ));
}
else
{
class_ranges->data.i[0] = 0;
class_ranges->data.i[1] = nsamples;
}
for( i = 0; i < nclusters; i++ )
{
int left = class_ranges->data.i[i], right = class_ranges->data.i[i+1];
max_count = MAX( max_count, right - left );
}
CV_CALL( hdr = (CvMat*)cvAlloc( max_count*sizeof(hdr[0]) ));
CV_CALL( vec = (const void**)cvAlloc( max_count*sizeof(vec[0]) ));
hdr[0] = cvMat( 1, dims, CV_32F );
for( i = 0; i < max_count; i++ )
{
vec[i] = hdr + i;
hdr[i] = hdr[0];
}
for( i = 0; i < nclusters; i++ )
{
int left = class_ranges->data.i[i], right = class_ranges->data.i[i+1];
int cluster_size = right - left;
CvMat avg;
if( cluster_size <= 0 )
continue;
for( j = left; j < right; j++ )
hdr[j - left].data.fl = train_data.data.fl[j];
CV_CALL( cvGetRow( means, &avg, i ));
CV_CALL( cvCalcCovarMatrix( vec, cluster_size, covs[i],
&avg, CV_COVAR_NORMAL | CV_COVAR_SCALE ));
weights->data.db[i] = (double)cluster_size/(double)nsamples;
}
}
__END__;
cvReleaseMat( &class_ranges );
cvReleaseMat( &labels );
cvFree( &hdr );
cvFree( &vec );
}
void CvEM::kmeans( const CvVectors& train_data, int nclusters, CvMat* labels,
CvTermCriteria termcrit, const CvMat* centers0 )
{
CvMat* centers = 0;
CvMat* old_centers = 0;
CvMat* counters = 0;
CV_FUNCNAME( "CvEM::kmeans" );
__BEGIN__;
CvRNG rng = cvRNG(-1);
int i, j, k, nsamples, dims;
int iter = 0;
double max_dist = DBL_MAX;
termcrit = cvCheckTermCriteria( termcrit, 1e-6, 100 );
termcrit.epsilon *= termcrit.epsilon;
nsamples = train_data.count;
dims = train_data.dims;
nclusters = MIN( nclusters, nsamples );
CV_CALL( centers = cvCreateMat( nclusters, dims, CV_64FC1 ));
CV_CALL( old_centers = cvCreateMat( nclusters, dims, CV_64FC1 ));
CV_CALL( counters = cvCreateMat( 1, nclusters, CV_32SC1 ));
cvZero( old_centers );
if( centers0 )
{
CV_CALL( cvConvert( centers0, centers ));
}
else
{
for( i = 0; i < nsamples; i++ )
labels->data.i[i] = i*nclusters/nsamples;
cvRandShuffle( labels, &rng );
}
for( ;; )
{
CvMat* temp;
if( iter > 0 || centers0 )
{
for( i = 0; i < nsamples; i++ )
{
const float* s = train_data.data.fl[i];
int k_best = 0;
double min_dist = DBL_MAX;
for( k = 0; k < nclusters; k++ )
{
const double* c = (double*)(centers->data.ptr + k*centers->step);
double dist = 0;
for( j = 0; j <= dims - 4; j += 4 )
{
double t0 = c[j] - s[j];
double t1 = c[j+1] - s[j+1];
dist += t0*t0 + t1*t1;
t0 = c[j+2] - s[j+2];
t1 = c[j+3] - s[j+3];
dist += t0*t0 + t1*t1;
}
for( ; j < dims; j++ )
{
double t = c[j] - s[j];
dist += t*t;
}
if( min_dist > dist )
{
min_dist = dist;
k_best = k;
}
}
labels->data.i[i] = k_best;
}
}
if( ++iter > termcrit.max_iter )
break;
CV_SWAP( centers, old_centers, temp );
cvZero( centers );
cvZero( counters );
// update centers
for( i = 0; i < nsamples; i++ )
{
const float* s = train_data.data.fl[i];
k = labels->data.i[i];
double* c = (double*)(centers->data.ptr + k*centers->step);
for( j = 0; j <= dims - 4; j += 4 )
{
double t0 = c[j] + s[j];
double t1 = c[j+1] + s[j+1];
c[j] = t0;
c[j+1] = t1;
t0 = c[j+2] + s[j+2];
t1 = c[j+3] + s[j+3];
c[j+2] = t0;
c[j+3] = t1;
}
for( ; j < dims; j++ )
c[j] += s[j];
counters->data.i[k]++;
}
if( iter > 1 )
max_dist = 0;
for( k = 0; k < nclusters; k++ )
{
double* c = (double*)(centers->data.ptr + k*centers->step);
if( counters->data.i[k] != 0 )
{
double scale = 1./counters->data.i[k];
for( j = 0; j < dims; j++ )
c[j] *= scale;
}
else
{
const float* s;
for( j = 0; j < 10; j++ )
{
i = cvRandInt( &rng ) % nsamples;
if( counters->data.i[labels->data.i[i]] > 1 )
break;
}
s = train_data.data.fl[i];
for( j = 0; j < dims; j++ )
c[j] = s[j];
}
if( iter > 1 )
{
double dist = 0;
const double* c_o = (double*)(old_centers->data.ptr + k*old_centers->step);
for( j = 0; j < dims; j++ )
{
double t = c[j] - c_o[j];
dist += t*t;
}
if( max_dist < dist )
max_dist = dist;
}
}
if( max_dist < termcrit.epsilon )
break;
}
cvZero( counters );
for( i = 0; i < nsamples; i++ )
counters->data.i[labels->data.i[i]]++;
// ensure that we do not have empty clusters
for( k = 0; k < nclusters; k++ )
if( counters->data.i[k] == 0 )
for(;;)
{
i = cvRandInt(&rng) % nsamples;
j = labels->data.i[i];
if( counters->data.i[j] > 1 )
{
labels->data.i[i] = k;
counters->data.i[j]--;
counters->data.i[k]++;
break;
}
}
__END__;
cvReleaseMat( &centers );
cvReleaseMat( &old_centers );
cvReleaseMat( &counters );
}
/****************************************************************************************/
/* log_weight_div_det[k] = -2*log(weights_k) + log(det(Sigma_k)))
covs[k] = cov_rotate_mats[k] * cov_eigen_values[k] * (cov_rotate_mats[k])'
cov_rotate_mats[k] are orthogonal matrices of eigenvectors and
cov_eigen_values[k] are diagonal matrices (represented by 1D vectors) of eigen values.
The <alpha_ik> is the probability of the vector x_i to belong to the k-th cluster:
<alpha_ik> ~ weights_k * exp{ -0.5[ln(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)] }
We calculate these probabilities here by the equivalent formulae:
Denote
S_ik = -0.5(log(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)) + log(weights_k),
M_i = max_k S_ik = S_qi, so that the q-th class is the one where maximum reaches. Then
alpha_ik = exp{ S_ik - M_i } / ( 1 + sum_j!=q exp{ S_ji - M_i })
*/
double CvEM::run_em( const CvVectors& train_data )
{
CvMat* centered_sample = 0;
CvMat* covs_item = 0;
CvMat* log_det = 0;
CvMat* log_weights = 0;
CvMat* cov_eigen_values = 0;
CvMat* samples = 0;
CvMat* sum_probs = 0;
log_likelihood = -DBL_MAX;
CV_FUNCNAME( "CvEM::run_em" );
__BEGIN__;
int nsamples = train_data.count, dims = train_data.dims, nclusters = params.nclusters;
double min_variation = FLT_EPSILON;
double min_det_value = MAX( DBL_MIN, pow( min_variation, dims ));
double likelihood_bias = -CV_LOG2PI * (double)nsamples * (double)dims / 2., _log_likelihood = -DBL_MAX;
int start_step = params.start_step;
int i, j, k, n;
int is_general = 0, is_diagonal = 0, is_spherical = 0;
double prev_log_likelihood = -DBL_MAX / 1000., det, d;
CvMat whdr, iwhdr, diag, *w, *iw;
double* w_data;
double* sp_data;
if( nclusters == 1 )
{
double log_weight;
CV_CALL( cvSet( probs, cvScalar(1.)) );
if( params.cov_mat_type == COV_MAT_SPHERICAL )
{
d = cvTrace(*covs).val[0]/dims;
d = MAX( d, FLT_EPSILON );
inv_eigen_values->data.db[0] = 1./d;
log_weight = pow( d, dims*0.5 );
}
else
{
w_data = inv_eigen_values->data.db;
if( params.cov_mat_type == COV_MAT_GENERIC )
cvSVD( *covs, inv_eigen_values, *cov_rotate_mats, 0, CV_SVD_U_T );
else
cvTranspose( cvGetDiag(*covs, &diag), inv_eigen_values );
cvMaxS( inv_eigen_values, FLT_EPSILON, inv_eigen_values );
for( j = 0, det = 1.; j < dims; j++ )
det *= w_data[j];
log_weight = sqrt(det);
cvDiv( 0, inv_eigen_values, inv_eigen_values );
}
log_weight_div_det->data.db[0] = -2*log(weights->data.db[0]/log_weight);
log_likelihood = DBL_MAX/1000.;
EXIT;
}
if( params.cov_mat_type == COV_MAT_GENERIC )
is_general = 1;
else if( params.cov_mat_type == COV_MAT_DIAGONAL )
is_diagonal = 1;
else if( params.cov_mat_type == COV_MAT_SPHERICAL )
is_spherical = 1;
/* In the case of <cov_mat_type> == COV_MAT_DIAGONAL, the k-th row of cov_eigen_values
contains the diagonal elements (variations). In the case of
<cov_mat_type> == COV_MAT_SPHERICAL - the 0-ths elements of the vectors cov_eigen_values[k]
are to be equal to the mean of the variations over all the dimensions. */
CV_CALL( log_det = cvCreateMat( 1, nclusters, CV_64FC1 ));
CV_CALL( log_weights = cvCreateMat( 1, nclusters, CV_64FC1 ));
CV_CALL( covs_item = cvCreateMat( dims, dims, CV_64FC1 ));
CV_CALL( centered_sample = cvCreateMat( 1, dims, CV_64FC1 ));
CV_CALL( cov_eigen_values = cvCreateMat( inv_eigen_values->rows, inv_eigen_values->cols, CV_64FC1 ));
CV_CALL( samples = cvCreateMat( nsamples, dims, CV_64FC1 ));
CV_CALL( sum_probs = cvCreateMat( 1, nclusters, CV_64FC1 ));
sp_data = sum_probs->data.db;
// copy the training data into double-precision matrix
for( i = 0; i < nsamples; i++ )
{
const float* src = train_data.data.fl[i];
double* dst = (double*)(samples->data.ptr + samples->step*i);
for( j = 0; j < dims; j++ )
dst[j] = src[j];
}
if( start_step != START_M_STEP )
{
for( k = 0; k < nclusters; k++ )
{
if( is_general || is_diagonal )
{
w = cvGetRow( cov_eigen_values, &whdr, k );
if( is_general )
cvSVD( covs[k], w, cov_rotate_mats[k], 0, CV_SVD_U_T );
else
cvTranspose( cvGetDiag( covs[k], &diag ), w );
w_data = w->data.db;
for( j = 0, det = 1.; j < dims; j++ )
det *= w_data[j];
if( det < min_det_value )
{
if( start_step == START_AUTO_STEP )
det = min_det_value;
else
EXIT;
}
log_det->data.db[k] = det;
}
else
{
d = cvTrace(covs[k]).val[0]/(double)dims;
if( d < min_variation )
{
if( start_step == START_AUTO_STEP )
d = min_variation;
else
EXIT;
}
cov_eigen_values->data.db[k] = d;
log_det->data.db[k] = d;
}
}
cvLog( log_det, log_det );
if( is_spherical )
cvScale( log_det, log_det, dims );
}
for( n = 0; n < params.term_crit.max_iter; n++ )
{
if( n > 0 || start_step != START_M_STEP )
{
// e-step: compute probs_ik from means_k, covs_k and weights_k.
CV_CALL(cvLog( weights, log_weights ));
// S_ik = -0.5[log(det(Sigma_k)) + (x_i - mu_k)' Sigma_k^(-1) (x_i - mu_k)] + log(weights_k)
for( k = 0; k < nclusters; k++ )
{
CvMat* u = cov_rotate_mats[k];
const double* mean = (double*)(means->data.ptr + means->step*k);
w = cvGetRow( cov_eigen_values, &whdr, k );
iw = cvGetRow( inv_eigen_values, &iwhdr, k );
cvDiv( 0, w, iw );
w_data = (double*)(inv_eigen_values->data.ptr + inv_eigen_values->step*k);
for( i = 0; i < nsamples; i++ )
{
double *csample = centered_sample->data.db, p = log_det->data.db[k];
const double* sample = (double*)(samples->data.ptr + samples->step*i);
double* pp = (double*)(probs->data.ptr + probs->step*i);
for( j = 0; j < dims; j++ )
csample[j] = sample[j] - mean[j];
if( is_general )
cvGEMM( centered_sample, u, 1, 0, 0, centered_sample, CV_GEMM_B_T );
for( j = 0; j < dims; j++ )
p += csample[j]*csample[j]*w_data[is_spherical ? 0 : j];
pp[k] = -0.5*p + log_weights->data.db[k];
// S_ik <- S_ik - max_j S_ij
if( k == nclusters - 1 )
{
double max_val = 0;
for( j = 0; j < nclusters; j++ )
max_val = MAX( max_val, pp[j] );
for( j = 0; j < nclusters; j++ )
pp[j] -= max_val;
}
}
}
CV_CALL(cvExp( probs, probs )); // exp( S_ik )
cvZero( sum_probs );
// alpha_ik = exp( S_ik ) / sum_j exp( S_ij ),
// log_likelihood = sum_i log (sum_j exp(S_ij))
for( i = 0, _log_likelihood = likelihood_bias; i < nsamples; i++ )
{
double* pp = (double*)(probs->data.ptr + probs->step*i), sum = 0;
for( j = 0; j < nclusters; j++ )
sum += pp[j];
sum = 1./MAX( sum, DBL_EPSILON );
for( j = 0; j < nclusters; j++ )
{
double p = pp[j] *= sum;
sp_data[j] += p;
}
_log_likelihood -= log( sum );
}
// check termination criteria
if( fabs( (_log_likelihood - prev_log_likelihood) / prev_log_likelihood ) < params.term_crit.epsilon )
break;
prev_log_likelihood = _log_likelihood;
}
// m-step: update means_k, covs_k and weights_k from probs_ik
cvGEMM( probs, samples, 1, 0, 0, means, CV_GEMM_A_T );
for( k = 0; k < nclusters; k++ )
{
double sum = sp_data[k], inv_sum = 1./sum;
CvMat* cov = covs[k], _mean, _sample;
w = cvGetRow( cov_eigen_values, &whdr, k );
w_data = w->data.db;
cvGetRow( means, &_mean, k );
cvGetRow( samples, &_sample, k );
// update weights_k
weights->data.db[k] = sum;
// update means_k
cvScale( &_mean, &_mean, inv_sum );
// compute covs_k
cvZero( cov );
cvZero( w );
for( i = 0; i < nsamples; i++ )
{
double p = probs->data.db[i*nclusters + k]*inv_sum;
_sample.data.db = (double*)(samples->data.ptr + samples->step*i);
if( is_general )
{
cvMulTransposed( &_sample, covs_item, 1, &_mean );
cvScaleAdd( covs_item, cvRealScalar(p), cov, cov );
}
else
for( j = 0; j < dims; j++ )
{
double val = _sample.data.db[j] - _mean.data.db[j];
w_data[is_spherical ? 0 : j] += p*val*val;
}
}
if( is_spherical )
{
d = w_data[0]/(double)dims;
d = MAX( d, min_variation );
w->data.db[0] = d;
log_det->data.db[k] = d;
}
else
{
if( is_general )
cvSVD( cov, w, cov_rotate_mats[k], 0, CV_SVD_U_T );
cvMaxS( w, min_variation, w );
for( j = 0, det = 1.; j < dims; j++ )
det *= w_data[j];
log_det->data.db[k] = det;
}
}
cvConvertScale( weights, weights, 1./(double)nsamples, 0 );
cvMaxS( weights, DBL_MIN, weights );
cvLog( log_det, log_det );
if( is_spherical )
cvScale( log_det, log_det, dims );
} // end of iteration process
//log_weight_div_det[k] = -2*log(weights_k/det(Sigma_k))^0.5) = -2*log(weights_k) + log(det(Sigma_k)))
if( log_weight_div_det )
{
cvScale( log_weights, log_weight_div_det, -2 );
cvAdd( log_weight_div_det, log_det, log_weight_div_det );
}
/* Now finalize all the covariation matrices:
1) if <cov_mat_type> == COV_MAT_DIAGONAL we used array of <w> as diagonals.
Now w[k] should be copied back to the diagonals of covs[k];
2) if <cov_mat_type> == COV_MAT_SPHERICAL we used the 0-th element of w[k]
as an average variation in each cluster. The value of the 0-th element of w[k]
should be copied to the all of the diagonal elements of covs[k]. */
if( is_spherical )
{
for( k = 0; k < nclusters; k++ )
cvSetIdentity( covs[k], cvScalar(cov_eigen_values->data.db[k]));
}
else if( is_diagonal )
{
for( k = 0; k < nclusters; k++ )
cvTranspose( cvGetRow( cov_eigen_values, &whdr, k ),
cvGetDiag( covs[k], &diag ));
}
cvDiv( 0, cov_eigen_values, inv_eigen_values );
log_likelihood = _log_likelihood;
__END__;
cvReleaseMat( &log_det );
cvReleaseMat( &log_weights );
cvReleaseMat( &covs_item );
cvReleaseMat( &centered_sample );
cvReleaseMat( &cov_eigen_values );
cvReleaseMat( &samples );
cvReleaseMat( &sum_probs );
return log_likelihood;
}
int CvEM::get_nclusters() const
{
return params.nclusters;
}
const CvMat* CvEM::get_means() const
{
return means;
}
const CvMat** CvEM::get_covs() const
{
return (const CvMat**)covs;
}
const CvMat* CvEM::get_weights() const
{
return weights;
}
const CvMat* CvEM::get_probs() const
{
return probs;
}
using namespace cv;
2010-11-02 17:58:22 +00:00
CvEM::CvEM( const Mat& samples, const Mat& sample_idx, CvEMParams params )
{
means = weights = probs = inv_eigen_values = log_weight_div_det = 0;
covs = cov_rotate_mats = 0;
// just invoke the train() method
2010-11-02 17:58:22 +00:00
train(samples, sample_idx, params);
}
bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
CvEMParams _params, Mat* _labels )
{
CvMat samples = _samples, sidx = _sample_idx, labels, *plabels = 0;
if( _labels )
{
int nsamples = sidx.data.ptr ? sidx.rows : samples.rows;
if( !(_labels->data && _labels->type() == CV_32SC1 &&
(_labels->cols == 1 || _labels->rows == 1) &&
_labels->cols + _labels->rows - 1 == nsamples) )
_labels->create(nsamples, 1, CV_32SC1);
plabels = &(labels = *_labels);
}
return train(&samples, sidx.data.ptr ? &sidx : 0, _params, plabels);
}
float
CvEM::predict( const Mat& _sample, Mat* _probs ) const
{
CvMat sample = _sample, probs, *pprobs = 0;
if( _probs )
{
int nclusters = params.nclusters;
if(!(_probs->data && (_probs->type() == CV_32F || _probs->type()==CV_64F) &&
(_probs->cols == 1 || _probs->rows == 1) &&
_probs->cols + _probs->rows - 1 == nclusters))
_probs->create(nclusters, 1, _sample.type());
pprobs = &(probs = *_probs);
}
return predict(&sample, pprobs);
}
2010-11-02 17:58:22 +00:00
int CvEM::getNClusters() const
{
return params.nclusters;
}
Mat CvEM::getMeans() const
{
return Mat(means);
}
void CvEM::getCovs(vector<Mat>& _covs) const
{
int i, n = params.nclusters;
_covs.resize(n);
for( i = 0; i < n; i++ )
_covs[i] = Mat(covs[i]);
}
Mat CvEM::getWeights() const
{
return Mat(weights);
}
Mat CvEM::getProbs() const
{
return Mat(probs);
}
/* End of file. */