opencv/modules/core/src/stat.cpp

1340 lines
40 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
template<typename T> static inline Scalar rawToScalar(const T& v)
{
Scalar s;
typedef typename DataType<T>::channel_type T1;
int i, n = DataType<T>::channels;
for( i = 0; i < n; i++ )
s.val[i] = ((T1*)&v)[i];
return s;
}
/****************************************************************************************\
* sum *
\****************************************************************************************/
template<typename T, typename ST>
static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn )
{
const T* src = src0;
if( !mask )
{
int i;
int k = cn % 4;
if( k == 1 )
{
ST s0 = dst[0];
for( i = 0; i <= len - 4; i += 4, src += cn*4 )
s0 += src[0] + src[cn] + src[cn*2] + src[cn*3];
for( ; i < len; i++, src += cn )
s0 += src[0];
dst[0] = s0;
}
else if( k == 2 )
{
ST s0 = dst[0], s1 = dst[1];
for( i = 0; i < len; i++, src += cn )
{
s0 += src[0];
s1 += src[1];
}
dst[0] = s0;
dst[1] = s1;
}
else if( k == 3 )
{
ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
for( i = 0; i < len; i++, src += cn )
{
s0 += src[0];
s1 += src[1];
s2 += src[2];
}
dst[0] = s0;
dst[1] = s1;
dst[2] = s2;
}
for( ; k < cn; k += 4 )
{
src = src0 + k;
ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3];
for( i = 0; i < len; i++, src += cn )
{
s0 += src[0]; s1 += src[1];
s2 += src[2]; s3 += src[3];
}
dst[k] = s0;
dst[k+1] = s1;
dst[k+2] = s2;
dst[k+3] = s3;
}
return len;
}
int i, nzm = 0;
if( cn == 1 )
{
ST s = dst[0];
for( i = 0; i < len; i++ )
if( mask[i] )
{
s += src[i];
nzm++;
}
dst[0] = s;
}
else if( cn == 3 )
2010-10-12 14:31:40 +02:00
{
ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
for( i = 0; i < len; i++, src += 3 )
if( mask[i] )
{
s0 += src[0];
s1 += src[1];
s2 += src[2];
nzm++;
}
dst[0] = s0;
dst[1] = s1;
dst[2] = s2;
2010-10-12 14:31:40 +02:00
}
else
{
for( i = 0; i < len; i++, src += cn )
if( mask[i] )
{
int k = 0;
for( ; k <= cn - 4; k += 4 )
{
ST s0, s1;
s0 = dst[k] + src[k];
s1 = dst[k+1] + src[k+1];
dst[k] = s0; dst[k+1] = s1;
s0 = dst[k+2] + src[k+2];
s1 = dst[k+3] + src[k+3];
dst[k+2] = s0; dst[k+3] = s1;
}
for( ; k < cn; k++ )
dst[k] += src[k];
nzm++;
}
}
return nzm;
}
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn )
{ return sum_(src, mask, dst, len, cn); }
typedef int (*SumFunc)(const uchar*, const uchar* mask, uchar*, int, int);
static SumFunc sumTab[] =
{
(SumFunc)sum8u, (SumFunc)sum8s, (SumFunc)sum16u, (SumFunc)sum16s,
(SumFunc)sum32s, (SumFunc)sum32f, (SumFunc)sum64f, 0
};
template<typename T>
static int countNonZero_(const T* src, int len )
{
int i, nz = 0;
for( i = 0; i <= len - 4; i += 4 )
nz += (src[i] != 0) + (src[i+1] != 0) + (src[i+2] != 0) + (src[i+3] != 0);
for( ; i < len; i++ )
nz += src[i] != 0;
return nz;
}
static int countNonZero8u( const uchar* src, int len )
{ return countNonZero_(src, len); }
static int countNonZero16u( const ushort* src, int len )
{ return countNonZero_(src, len); }
static int countNonZero32s( const int* src, int len )
{ return countNonZero_(src, len); }
static int countNonZero32f( const float* src, int len )
{ return countNonZero_(src, len); }
static int countNonZero64f( const double* src, int len )
{ return countNonZero_(src, len); }
typedef int (*CountNonZeroFunc)(const uchar*, int);
static CountNonZeroFunc countNonZeroTab[] =
{
(CountNonZeroFunc)countNonZero8u, (CountNonZeroFunc)countNonZero8u,
(CountNonZeroFunc)countNonZero16u, (CountNonZeroFunc)countNonZero16u,
(CountNonZeroFunc)countNonZero32s, (CountNonZeroFunc)countNonZero32f,
(CountNonZeroFunc)countNonZero64f, 0
};
template<typename T, typename ST, typename SQT>
static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn )
{
const T* src = src0;
2010-10-12 14:31:40 +02:00
if( !mask )
2010-10-12 14:31:40 +02:00
{
int i;
int k = cn % 4;
if( k == 1 )
{
ST s0 = sum[0];
SQT sq0 = sqsum[0];
for( i = 0; i < len; i++, src += cn )
{
T v = src[0];
s0 += v; sq0 += (SQT)v*v;
}
sum[0] = s0;
sqsum[0] = sq0;
}
else if( k == 2 )
{
ST s0 = sum[0], s1 = sum[1];
SQT sq0 = sqsum[0], sq1 = sqsum[1];
for( i = 0; i < len; i++, src += cn )
{
T v0 = src[0], v1 = src[1];
s0 += v0; sq0 += (SQT)v0*v0;
s1 += v1; sq1 += (SQT)v1*v1;
}
sum[0] = s0; sum[1] = s1;
sqsum[0] = sq0; sqsum[1] = sq1;
}
else if( k == 3 )
{
ST s0 = sum[0], s1 = sum[1], s2 = sum[2];
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2];
for( i = 0; i < len; i++, src += cn )
{
T v0 = src[0], v1 = src[1], v2 = src[2];
s0 += v0; sq0 += (SQT)v0*v0;
s1 += v1; sq1 += (SQT)v1*v1;
s2 += v2; sq2 += (SQT)v2*v2;
}
sum[0] = s0; sum[1] = s1; sum[2] = s2;
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2;
}
for( ; k < cn; k += 4 )
2010-10-12 14:31:40 +02:00
{
src = src0 + k;
ST s0 = sum[k], s1 = sum[k+1], s2 = sum[k+2], s3 = sum[k+3];
SQT sq0 = sqsum[k], sq1 = sqsum[k+1], sq2 = sqsum[k+2], sq3 = sqsum[k+3];
for( i = 0; i < len; i++, src += cn )
{
T v0, v1;
v0 = src[0], v1 = src[1];
s0 += v0; sq0 += (SQT)v0*v0;
s1 += v1; sq1 += (SQT)v1*v1;
v0 = src[2], v1 = src[3];
s2 += v0; sq2 += (SQT)v0*v0;
s3 += v1; sq3 += (SQT)v1*v1;
}
sum[k] = s0; sum[k+1] = s1;
sum[k+2] = s2; sum[k+3] = s3;
sqsum[k] = sq0; sqsum[k+1] = sq1;
sqsum[k+2] = sq2; sqsum[k+3] = sq3;
2010-10-12 14:31:40 +02:00
}
return len;
2010-10-12 14:31:40 +02:00
}
int i, nzm = 0;
if( cn == 1 )
{
ST s0 = sum[0];
SQT sq0 = sqsum[0];
for( i = 0; i < len; i++ )
if( mask[i] )
{
T v = src[i];
s0 += v; sq0 += (SQT)v*v;
nzm++;
}
sum[0] = s0;
sqsum[0] = sq0;
}
else if( cn == 3 )
{
ST s0 = sum[0], s1 = sum[1], s2 = sum[2];
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2];
for( i = 0; i < len; i++, src += 3 )
if( mask[i] )
{
T v0 = src[0], v1 = src[1], v2 = src[2];
s0 += v0; sq0 += (SQT)v0*v0;
s1 += v1; sq1 += (SQT)v1*v1;
s2 += v2; sq2 += (SQT)v2*v2;
nzm++;
}
sum[0] = s0; sum[1] = s1; sum[2] = s2;
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2;
}
else
{
for( i = 0; i < len; i++, src += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
{
T v = src[k];
ST s = sum[k] + v;
SQT sq = sqsum[k] + (SQT)v*v;
sum[k] = s; sqsum[k] = sq;
}
nzm++;
}
}
return nzm;
}
static int sqsum8u( const uchar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum8s( const schar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum16u( const ushort* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum16s( const short* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum32s( const int* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum32f( const float* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
static int sqsum64f( const double* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int);
static SumSqrFunc sumSqrTab[] =
{
(SumSqrFunc)sqsum8u, (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s,
(SumSqrFunc)sqsum32s, (SumSqrFunc)sqsum32f, (SumSqrFunc)sqsum64f, 0
};
}
cv::Scalar cv::sum( InputArray _src )
{
Mat src = _src.getMat();
int k, cn = src.channels(), depth = src.depth();
SumFunc func = sumTab[depth];
CV_Assert( cn <= 4 && func != 0 );
const Mat* arrays[] = {&src, 0};
uchar* ptrs[1];
NAryMatIterator it(arrays, ptrs);
Scalar s;
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
int j, count = 0;
AutoBuffer<int> _buf;
int* buf = (int*)&s[0];
size_t esz = 0;
bool blockSum = depth < CV_32S;
if( blockSum )
{
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
blockSize = std::min(blockSize, intSumBlockSize);
_buf.allocate(cn);
buf = _buf;
for( k = 0; k < cn; k++ )
buf[k] = 0;
esz = src.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
{
int bsz = std::min(total - j, blockSize);
func( ptrs[0], 0, (uchar*)buf, bsz, cn );
count += bsz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
for( k = 0; k < cn; k++ )
{
s[k] += buf[k];
buf[k] = 0;
}
count = 0;
}
ptrs[0] += bsz*esz;
}
}
return s;
}
int cv::countNonZero( InputArray _src )
{
Mat src = _src.getMat();
CountNonZeroFunc func = countNonZeroTab[src.depth()];
CV_Assert( src.channels() == 1 && func != 0 );
const Mat* arrays[] = {&src, 0};
uchar* ptrs[1];
NAryMatIterator it(arrays, ptrs);
int total = (int)it.size, nz = 0;
for( size_t i = 0; i < it.nplanes; i++, ++it )
nz += func( ptrs[0], total );
return nz;
}
cv::Scalar cv::mean( InputArray _src, InputArray _mask )
{
Mat src = _src.getMat(), mask = _mask.getMat();
CV_Assert( mask.empty() || mask.type() == CV_8U );
int k, cn = src.channels(), depth = src.depth();
SumFunc func = sumTab[depth];
CV_Assert( cn <= 4 && func != 0 );
const Mat* arrays[] = {&src, &mask, 0};
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs);
Scalar s;
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
int j, count = 0;
AutoBuffer<int> _buf;
int* buf = (int*)&s[0];
bool blockSum = depth <= CV_16S;
size_t esz = 0, nz0 = 0;
if( blockSum )
{
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
blockSize = std::min(blockSize, intSumBlockSize);
_buf.allocate(cn);
buf = _buf;
for( k = 0; k < cn; k++ )
buf[k] = 0;
esz = src.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
{
int bsz = std::min(total - j, blockSize);
int nz = func( ptrs[0], ptrs[1], (uchar*)buf, bsz, cn );
count += nz;
nz0 += nz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
for( k = 0; k < cn; k++ )
{
s[k] += buf[k];
buf[k] = 0;
}
count = 0;
}
ptrs[0] += bsz*esz;
if( ptrs[1] )
ptrs[1] += bsz;
}
}
return s*(nz0 ? 1./nz0 : 0);
}
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
{
Mat src = _src.getMat(), mask = _mask.getMat();
CV_Assert( mask.empty() || mask.type() == CV_8U );
int k, cn = src.channels(), depth = src.depth();
SumSqrFunc func = sumSqrTab[depth];
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &mask, 0};
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs);
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
int j, count = 0, nz0 = 0;
AutoBuffer<double> _buf(cn*4);
double *s = (double*)_buf, *sq = s + cn;
int *sbuf = (int*)s, *sqbuf = (int*)sq;
bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S;
size_t esz = 0;
for( k = 0; k < cn; k++ )
s[k] = sq[k] = 0;
if( blockSum )
{
intSumBlockSize = 1 << 15;
blockSize = std::min(blockSize, intSumBlockSize);
sbuf = (int*)(sq + cn);
if( blockSqSum )
sqbuf = sbuf + cn;
for( k = 0; k < cn; k++ )
sbuf[k] = sqbuf[k] = 0;
esz = src.elemSize();
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
2010-10-12 14:31:40 +02:00
{
int bsz = std::min(total - j, blockSize);
int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn );
count += nz;
nz0 += nz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
for( k = 0; k < cn; k++ )
{
s[k] += sbuf[k];
sbuf[k] = 0;
}
if( blockSqSum )
{
for( k = 0; k < cn; k++ )
{
sq[k] += sqbuf[k];
sqbuf[k] = 0;
}
}
count = 0;
}
ptrs[0] += bsz*esz;
if( ptrs[1] )
ptrs[1] += bsz;
2010-10-12 14:31:40 +02:00
}
}
double scale = nz0 ? 1./nz0 : 0.;
for( int k = 0; k < cn; k++ )
{
s[k] *= scale;
sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.));
}
2010-10-12 14:31:40 +02:00
for( j = 0; j < 2; j++ )
{
const double* sptr = j == 0 ? s : sq;
_OutputArray _dst = j == 0 ? _mean : _sdv;
if( !_dst.needed() )
continue;
if( !_dst.fixedSize() )
_dst.create(cn, 1, CV_64F, -1, true);
Mat dst = _dst.getMat();
int dcn = (int)dst.total();
CV_Assert( dst.type() == CV_64F && dst.isContinuous() &&
(dst.cols == 1 || dst.rows == 1) && dcn >= cn );
double* dptr = dst.ptr<double>();
for( k = 0; k < cn; k++ )
dptr[k] = sptr[k];
for( ; k < dcn; k++ )
dptr[k] = 0;
}
}
/****************************************************************************************\
* minMaxLoc *
\****************************************************************************************/
namespace cv
{
template<typename T, typename WT> static void
minMaxIdx_( const T* src, const uchar* mask, WT* _minVal, WT* _maxVal,
size_t* _minIdx, size_t* _maxIdx, int len, size_t startIdx )
{
WT minVal = *_minVal, maxVal = *_maxVal;
size_t minIdx = *_minIdx, maxIdx = *_maxIdx;
if( !mask )
{
for( int i = 0; i < len; i++ )
{
T val = src[i];
if( val < minVal )
{
minVal = val;
minIdx = startIdx + i;
}
if( val > maxVal )
{
maxVal = val;
maxIdx = startIdx + i;
}
}
}
else
{
for( int i = 0; i < len; i++ )
{
T val = src[i];
if( mask[i] && val < minVal )
{
minVal = val;
minIdx = startIdx + i;
}
if( mask[i] && val > maxVal )
{
maxVal = val;
maxIdx = startIdx + i;
}
}
}
*_minIdx = minIdx;
*_maxIdx = maxIdx;
*_minVal = minVal;
*_maxVal = maxVal;
}
static void minMaxIdx_8u(const uchar* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_8s(const schar* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_16u(const ushort* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_16s(const short* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_32s(const int* src, const uchar* mask, int* minval, int* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_32f(const float* src, const uchar* mask, float* minval, float* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
static void minMaxIdx_64f(const double* src, const uchar* mask, double* minval, double* maxval,
size_t* minidx, size_t* maxidx, int len, size_t startidx )
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); }
typedef void (*MinMaxIdxFunc)(const uchar*, const uchar*, int*, int*, size_t*, size_t*, int, size_t);
static MinMaxIdxFunc minmaxTab[] =
{
(MinMaxIdxFunc)minMaxIdx_8u, (MinMaxIdxFunc)minMaxIdx_8s, (MinMaxIdxFunc)minMaxIdx_16u,
(MinMaxIdxFunc)minMaxIdx_16s, (MinMaxIdxFunc)minMaxIdx_32s, (MinMaxIdxFunc)minMaxIdx_32f,
(MinMaxIdxFunc)minMaxIdx_64f, 0
};
2010-10-12 14:31:40 +02:00
static void ofs2idx(const Mat& a, size_t ofs, int* idx)
{
int i, d = a.dims;
if( ofs > 0 )
{
ofs--;
for( i = d-1; i >= 0; i-- )
{
int sz = a.size[i];
idx[i] = (int)(ofs % sz);
ofs /= sz;
}
}
else
2010-10-12 14:31:40 +02:00
{
for( i = d-1; i >= 0; i-- )
idx[i] = -1;
2010-10-12 14:31:40 +02:00
}
}
}
2010-10-12 14:31:40 +02:00
void cv::minMaxIdx(InputArray _src, double* minVal,
double* maxVal, int* minIdx, int* maxIdx,
InputArray _mask)
2010-10-12 14:31:40 +02:00
{
Mat src = _src.getMat(), mask = _mask.getMat();
int depth = src.depth();
CV_Assert( src.channels() == 1 && (mask.empty() || mask.type() == CV_8U) );
MinMaxIdxFunc func = minmaxTab[depth];
CV_Assert( func != 0 );
2010-10-12 14:31:40 +02:00
const Mat* arrays[] = {&src, &mask, 0};
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs);
2010-10-12 14:31:40 +02:00
size_t minidx = 0, maxidx = 0;
int iminval = INT_MAX, imaxval = INT_MIN;
float fminval = FLT_MAX, fmaxval = -FLT_MAX;
double dminval = DBL_MAX, dmaxval = -DBL_MAX;
size_t startidx = 1;
int *minval = &iminval, *maxval = &imaxval;
int planeSize = (int)it.size;
if( depth == CV_32F )
minval = (int*)&fminval, maxval = (int*)&fmaxval;
else if( depth == CV_64F )
minval = (int*)&dminval, maxval = (int*)&dmaxval;
for( size_t i = 0; i < it.nplanes; i++, ++it, startidx += planeSize )
func( ptrs[0], ptrs[1], minval, maxval, &minidx, &maxidx, planeSize, startidx );
2010-10-12 14:31:40 +02:00
if( minidx == 0 )
dminval = dmaxval = 0;
else if( depth == CV_32F )
dminval = fminval, dmaxval = fmaxval;
else if( depth <= CV_32S )
dminval = iminval, dmaxval = imaxval;
2010-10-12 14:31:40 +02:00
if( minVal )
*minVal = dminval;
2010-10-12 14:31:40 +02:00
if( maxVal )
*maxVal = dmaxval;
2010-10-12 14:31:40 +02:00
if( minIdx )
ofs2idx(src, minidx, minIdx);
2010-10-12 14:31:40 +02:00
if( maxIdx )
ofs2idx(src, maxidx, maxIdx);
2010-10-12 14:31:40 +02:00
}
void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal,
Point* minLoc, Point* maxLoc, InputArray mask )
{
Mat img = _img.getMat();
CV_Assert(img.dims <= 2);
minMaxIdx(_img, minVal, maxVal, (int*)minLoc, (int*)maxLoc, mask);
if( minLoc )
std::swap(minLoc->x, minLoc->y);
if( maxLoc )
std::swap(maxLoc->x, maxLoc->y);
}
2010-10-12 14:31:40 +02:00
/****************************************************************************************\
* norm *
\****************************************************************************************/
namespace cv
{
template<typename T, typename ST> int
normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
len *= cn;
for( int i = 0; i < len; i++ )
result = std::max(result, ST(std::abs(src[i])));
}
else
{
for( int i = 0; i < len; i++, src += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
result = std::max(result, ST(std::abs(src[k])));
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
len *= cn;
for( int i = 0; i < len; i++ )
result += std::abs(src[i]);
}
else
{
for( int i = 0; i < len; i++, src += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
result += std::abs(src[k]);
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
len *= cn;
for( int i = 0; i < len; i++ )
{
T v = src[i];
result += (ST)v*v;
}
}
else
{
for( int i = 0; i < len; i++, src += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
{
T v = src[k];
result += (ST)v*v;
}
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
len *= cn;
for( int i = 0; i < len; i++ )
2011-06-10 08:53:34 +02:00
result = std::max(result, (ST)std::abs(src1[i] - src2[i]));
}
else
{
for( int i = 0; i < len; i++, src1 += cn, src2 += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
2011-06-10 08:53:34 +02:00
result = std::max(result, (ST)std::abs(src1[k] - src2[k]));
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normDiffL1_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
len *= cn;
for( int i = 0; i < len; i++ )
result += std::abs(src1[i] - src2[i]);
}
else
{
for( int i = 0; i < len; i++, src1 += cn, src2 += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
result += std::abs(src1[k] - src2[k]);
}
}
*_result = result;
return 0;
}
template<typename T, typename ST> int
normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn)
{
ST result = *_result;
if( !mask )
{
len *= cn;
for( int i = 0; i < len; i++ )
{
ST v = src1[i] - src2[i];
result += v*v;
}
}
else
{
for( int i = 0; i < len; i++, src1 += cn, src2 += cn )
if( mask[i] )
{
for( int k = 0; k < cn; k++ )
{
ST v = src1[k] - src2[k];
result += v*v;
}
}
}
*_result = result;
return 0;
}
#define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \
{ return norm##L##_(src, mask, r, len, cn); } \
static int normDiff##L##_##suffix(const type* src1, const type* src2, \
const uchar* mask, ntype* r, int len, int cn) \
{ return normDiff##L##_(src1, src2, mask, r, (int)len, cn); }
#define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \
CV_DEF_NORM_FUNC(L2, suffix, type, l2type)
CV_DEF_NORM_ALL(8u, uchar, int, int, int)
CV_DEF_NORM_ALL(8s, schar, int, int, int)
CV_DEF_NORM_ALL(16u, ushort, int, int, double)
CV_DEF_NORM_ALL(16s, short, int, int, double)
CV_DEF_NORM_ALL(32s, int, int, double, double)
CV_DEF_NORM_ALL(32f, float, float, double, double)
CV_DEF_NORM_ALL(64f, double, double, double, double)
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int);
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int);
static NormFunc normTab[3][8] =
{
{
(NormFunc)normInf_8u, (NormFunc)normInf_8s, (NormFunc)normInf_16u, (NormFunc)normInf_16s,
(NormFunc)normInf_32s, (NormFunc)normInf_32f, (NormFunc)normInf_64f, 0
},
{
(NormFunc)normL1_8u, (NormFunc)normL1_8s, (NormFunc)normL1_16u, (NormFunc)normL1_16s,
(NormFunc)normL1_32s, (NormFunc)normL1_32f, (NormFunc)normL1_64f, 0
},
{
(NormFunc)normL2_8u, (NormFunc)normL2_8s, (NormFunc)normL2_16u, (NormFunc)normL2_16s,
(NormFunc)normL2_32s, (NormFunc)normL2_32f, (NormFunc)normL2_64f, 0
}
};
static NormDiffFunc normDiffTab[3][8] =
{
{
(NormDiffFunc)normDiffInf_8u, (NormDiffFunc)normDiffInf_8s,
(NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s,
(NormDiffFunc)normDiffInf_32s, (NormDiffFunc)normDiffInf_32f,
(NormDiffFunc)normDiffInf_64f, 0
},
{
(NormDiffFunc)normDiffL1_8u, (NormDiffFunc)normDiffL1_8s,
(NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s,
(NormDiffFunc)normDiffL1_32s, (NormDiffFunc)normDiffL1_32f,
(NormDiffFunc)normDiffL1_64f, 0
},
{
(NormDiffFunc)normDiffL2_8u, (NormDiffFunc)normDiffL2_8s,
(NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s,
(NormDiffFunc)normDiffL2_32s, (NormDiffFunc)normDiffL2_32f,
(NormDiffFunc)normDiffL2_64f, 0
}
};
}
double cv::norm( InputArray _src, int normType, InputArray _mask )
{
Mat src = _src.getMat(), mask = _mask.getMat();
int depth = src.depth(), cn = src.channels();
normType &= 7;
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
2010-10-12 14:31:40 +02:00
if( depth == CV_32F && src.isContinuous() && mask.empty() )
2010-10-12 14:31:40 +02:00
{
size_t len = src.total()*cn;
if( len == (size_t)(int)len )
2010-10-12 14:31:40 +02:00
{
const float* data = src.ptr<float>();
if( normType == NORM_L2 )
{
double result = 0;
normL2_32f(data, 0, &result, (int)len, 1);
return std::sqrt(result);
}
if( normType == NORM_L1 )
{
double result = 0;
normL1_32f(data, 0, &result, (int)len, 1);
return result;
}
{
float result = 0;
normInf_32f(data, 0, &result, (int)len, 1);
return result;
}
2010-10-12 14:31:40 +02:00
}
}
CV_Assert( mask.empty() || mask.type() == CV_8U );
NormFunc func = normTab[normType >> 1][depth];
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &mask, 0};
uchar* ptrs[2];
union
{
double d;
int i;
float f;
}
result;
result.d = 0;
NAryMatIterator it(arrays, ptrs);
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0;
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) ||
(normType == NORM_L2 && depth <= CV_8S);
int isum = 0;
int *ibuf = &result.i;
size_t esz = 0;
if( blockSum )
{
intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn;
blockSize = std::min(blockSize, intSumBlockSize);
ibuf = &isum;
esz = src.elemSize();
}
2010-10-12 14:31:40 +02:00
for( size_t i = 0; i < it.nplanes; i++, ++it )
2010-10-12 14:31:40 +02:00
{
for( j = 0; j < total; j += blockSize )
2010-10-12 14:31:40 +02:00
{
int bsz = std::min(total - j, blockSize);
func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn );
count += bsz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
result.d += isum;
isum = 0;
count = 0;
}
ptrs[0] += bsz*esz;
if( ptrs[1] )
ptrs[1] += bsz;
2010-10-12 14:31:40 +02:00
}
}
if( normType == NORM_INF )
2010-10-12 14:31:40 +02:00
{
if( depth == CV_64F )
;
else if( depth == CV_32F )
result.d = result.f;
else
result.d = result.i;
2010-10-12 14:31:40 +02:00
}
else if( normType == NORM_L2 )
result.d = std::sqrt(result.d);
2010-10-12 14:31:40 +02:00
return result.d;
}
double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask )
{
2011-06-02 14:45:00 +02:00
if( normType & CV_RELATIVE )
return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON);
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
int depth = src1.depth(), cn = src1.channels();
CV_Assert( src1.size == src2.size && src1.type() == src2.type() );
normType &= 7;
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
2010-10-12 14:31:40 +02:00
if( src1.depth() == CV_32F && src1.isContinuous() && src2.isContinuous() && mask.empty() )
2010-10-12 14:31:40 +02:00
{
size_t len = src1.total()*src1.channels();
if( len == (size_t)(int)len )
2010-10-12 14:31:40 +02:00
{
const float* data1 = src1.ptr<float>();
const float* data2 = src2.ptr<float>();
if( normType == NORM_L2 )
{
double result = 0;
normDiffL2_32f(data1, data2, 0, &result, (int)len, 1);
return std::sqrt(result);
}
if( normType == NORM_L1 )
{
double result = 0;
normDiffL1_32f(data1, data2, 0, &result, (int)len, 1);
return result;
}
{
float result = 0;
normDiffInf_32f(data1, data2, 0, &result, (int)len, 1);
return result;
}
2010-10-12 14:31:40 +02:00
}
}
CV_Assert( mask.empty() || mask.type() == CV_8U );
NormDiffFunc func = normDiffTab[normType >> 1][depth];
CV_Assert( func != 0 );
const Mat* arrays[] = {&src1, &src2, &mask, 0};
uchar* ptrs[3];
union
{
double d;
float f;
int i;
unsigned u;
}
result;
result.d = 0;
NAryMatIterator it(arrays, ptrs);
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0;
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) ||
(normType == NORM_L2 && depth <= CV_8S);
unsigned isum = 0;
unsigned *ibuf = &result.u;
size_t esz = 0;
if( blockSum )
2010-10-12 14:31:40 +02:00
{
intSumBlockSize = normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15);
blockSize = std::min(blockSize, intSumBlockSize);
ibuf = &isum;
esz = src1.elemSize();
2010-10-12 14:31:40 +02:00
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
2010-10-12 14:31:40 +02:00
{
for( j = 0; j < total; j += blockSize )
2010-10-12 14:31:40 +02:00
{
int bsz = std::min(total - j, blockSize);
func( ptrs[0], ptrs[1], ptrs[2], (uchar*)ibuf, bsz, cn );
count += bsz;
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
{
result.d += isum;
isum = 0;
count = 0;
}
ptrs[0] += bsz*esz;
ptrs[1] += bsz*esz;
if( ptrs[2] )
ptrs[2] += bsz;
2010-10-12 14:31:40 +02:00
}
}
if( normType == NORM_INF )
2010-10-12 14:31:40 +02:00
{
if( depth == CV_64F )
;
else if( depth == CV_32F )
result.d = result.f;
else
result.d = result.u;
2010-10-12 14:31:40 +02:00
}
else if( normType == NORM_L2 )
result.d = std::sqrt(result.d);
2010-10-12 14:31:40 +02:00
return result.d;
}
CV_IMPL CvScalar cvSum( const CvArr* srcarr )
{
cv::Scalar sum = cv::sum(cv::cvarrToMat(srcarr, false, true, 1));
if( CV_IS_IMAGE(srcarr) )
{
int coi = cvGetImageCOI((IplImage*)srcarr);
if( coi )
{
CV_Assert( 0 < coi && coi <= 4 );
sum = cv::Scalar(sum[coi-1]);
}
}
return sum;
}
CV_IMPL int cvCountNonZero( const CvArr* imgarr )
{
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1);
if( img.channels() > 1 )
cv::extractImageCOI(imgarr, img);
return countNonZero(img);
}
CV_IMPL CvScalar
cvAvg( const void* imgarr, const void* maskarr )
{
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1);
cv::Scalar mean = !maskarr ? cv::mean(img) : cv::mean(img, cv::cvarrToMat(maskarr));
if( CV_IS_IMAGE(imgarr) )
{
int coi = cvGetImageCOI((IplImage*)imgarr);
if( coi )
{
CV_Assert( 0 < coi && coi <= 4 );
mean = cv::Scalar(mean[coi-1]);
}
}
return mean;
}
CV_IMPL void
cvAvgSdv( const CvArr* imgarr, CvScalar* _mean, CvScalar* _sdv, const void* maskarr )
{
cv::Scalar mean, sdv;
cv::Mat mask;
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::meanStdDev(cv::cvarrToMat(imgarr, false, true, 1), mean, sdv, mask );
if( CV_IS_IMAGE(imgarr) )
{
int coi = cvGetImageCOI((IplImage*)imgarr);
if( coi )
{
CV_Assert( 0 < coi && coi <= 4 );
mean = cv::Scalar(mean[coi-1]);
sdv = cv::Scalar(sdv[coi-1]);
}
}
if( _mean )
*(cv::Scalar*)_mean = mean;
if( _sdv )
*(cv::Scalar*)_sdv = sdv;
}
CV_IMPL void
cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal,
CvPoint* _minLoc, CvPoint* _maxLoc, const void* maskarr )
{
cv::Mat mask, img = cv::cvarrToMat(imgarr, false, true, 1);
if( maskarr )
mask = cv::cvarrToMat(maskarr);
if( img.channels() > 1 )
cv::extractImageCOI(imgarr, img);
cv::minMaxLoc( img, _minVal, _maxVal,
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask );
}
CV_IMPL double
cvNorm( const void* imgA, const void* imgB, int normType, const void* maskarr )
{
cv::Mat a, mask;
if( !imgA )
{
imgA = imgB;
imgB = 0;
}
a = cv::cvarrToMat(imgA, false, true, 1);
if( maskarr )
mask = cv::cvarrToMat(maskarr);
if( a.channels() > 1 && CV_IS_IMAGE(imgA) && cvGetImageCOI((const IplImage*)imgA) > 0 )
cv::extractImageCOI(imgA, a);
if( !imgB )
return !maskarr ? cv::norm(a, normType) : cv::norm(a, normType, mask);
cv::Mat b = cv::cvarrToMat(imgB, false, true, 1);
if( b.channels() > 1 && CV_IS_IMAGE(imgB) && cvGetImageCOI((const IplImage*)imgB) > 0 )
cv::extractImageCOI(imgB, b);
return !maskarr ? cv::norm(a, b, normType) : cv::norm(a, b, normType, mask);
}