121 lines
4.6 KiB
C++
121 lines
4.6 KiB
C++
|
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
// A demo program of the Extremal Region Filter algorithm described in
|
||
|
// Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
|
||
|
#include "opencv2/opencv.hpp"
|
||
|
#include "opencv2/objdetect.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
|
||
|
#include <vector>
|
||
|
#include <iostream>
|
||
|
#include <iomanip>
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
|
||
|
void er_draw(Mat &src, Mat &dst, ERStat& er);
|
||
|
|
||
|
void er_draw(Mat &src, Mat &dst, ERStat& er)
|
||
|
{
|
||
|
|
||
|
if (er.parent != NULL) // deprecate the root region
|
||
|
{
|
||
|
int newMaskVal = 255;
|
||
|
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
|
||
|
floodFill(src,dst,Point(er.pixel%src.cols,er.pixel/src.cols),Scalar(255),0,Scalar(er.level),Scalar(0),flags);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
int main(int argc, const char * argv[])
|
||
|
{
|
||
|
|
||
|
|
||
|
vector<ERStat> regions;
|
||
|
|
||
|
if (argc < 2) {
|
||
|
cout << "Demo program of the Extremal Region Filter algorithm described in " << endl;
|
||
|
cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl;
|
||
|
cout << " Usage: " << argv[0] << " input_image <optional_groundtruth_image>" << endl;
|
||
|
cout << " Default classifier files (trained_classifierNM*.xml) should be in ./" << endl;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
Mat original = imread(argv[1]);
|
||
|
Mat gt;
|
||
|
if (argc > 2)
|
||
|
{
|
||
|
gt = imread(argv[2]);
|
||
|
cvtColor(gt, gt, COLOR_RGB2GRAY);
|
||
|
threshold(gt, gt, 254, 255, THRESH_BINARY);
|
||
|
}
|
||
|
Mat grey(original.size(),CV_8UC1);
|
||
|
cvtColor(original,grey,COLOR_RGB2GRAY);
|
||
|
|
||
|
double t = (double)getTickCount();
|
||
|
|
||
|
// Build ER tree and filter with the 1st stage default classifier
|
||
|
Ptr<ERFilter> er_filter1 = createERFilterNM1();
|
||
|
|
||
|
er_filter1->run(grey, regions);
|
||
|
|
||
|
t = (double)getTickCount() - t;
|
||
|
cout << " --------------------------------------------------------------------------------------------------" << endl;
|
||
|
cout << "\t FIRST STAGE CLASSIFIER done in " << t * 1000. / getTickFrequency() << " ms." << endl;
|
||
|
cout << " --------------------------------------------------------------------------------------------------" << endl;
|
||
|
cout << setw(9) << regions.size()+er_filter1->getNumRejected() << "\t Extremal Regions extracted " << endl;
|
||
|
cout << setw(9) << regions.size() << "\t Extremal Regions selected by the first stage of the sequential classifier." << endl;
|
||
|
cout << "\t \t (saving into out_second_stage.jpg)" << endl;
|
||
|
cout << " --------------------------------------------------------------------------------------------------" << endl;
|
||
|
|
||
|
er_filter1.release();
|
||
|
|
||
|
// draw regions
|
||
|
Mat mask = Mat::zeros(grey.rows+2,grey.cols+2,CV_8UC1);
|
||
|
for (int r=0; r<(int)regions.size(); r++)
|
||
|
er_draw(grey, mask, regions.at(r));
|
||
|
mask = 255-mask;
|
||
|
imwrite("out_first_stage.jpg", mask);
|
||
|
|
||
|
if (argc > 2)
|
||
|
{
|
||
|
Mat tmp_mask = (255-gt) & (255-mask(Rect(Point(1,1),Size(mask.cols-2,mask.rows-2))));
|
||
|
cout << "Recall for the 1st stage filter = " << (float)countNonZero(tmp_mask) / countNonZero(255-gt) << endl;
|
||
|
}
|
||
|
|
||
|
t = (double)getTickCount();
|
||
|
|
||
|
// Default second stage classifier
|
||
|
Ptr<ERFilter> er_filter2 = createERFilterNM2();
|
||
|
er_filter2->run(grey, regions);
|
||
|
|
||
|
t = (double)getTickCount() - t;
|
||
|
cout << " --------------------------------------------------------------------------------------------------" << endl;
|
||
|
cout << "\t SECOND STAGE CLASSIFIER done in " << t * 1000. / getTickFrequency() << " ms." << endl;
|
||
|
cout << " --------------------------------------------------------------------------------------------------" << endl;
|
||
|
cout << setw(9) << regions.size() << "\t Extremal Regions selected by the second stage of the sequential classifier." << endl;
|
||
|
cout << "\t \t (saving into out_second_stage.jpg)" << endl;
|
||
|
cout << " --------------------------------------------------------------------------------------------------" << endl;
|
||
|
|
||
|
er_filter2.release();
|
||
|
|
||
|
// draw regions
|
||
|
mask = mask*0;
|
||
|
for (int r=0; r<(int)regions.size(); r++)
|
||
|
er_draw(grey, mask, regions.at(r));
|
||
|
mask = 255-mask;
|
||
|
imwrite("out_second_stage.jpg", mask);
|
||
|
|
||
|
if (argc > 2)
|
||
|
{
|
||
|
Mat tmp_mask = (255-gt) & (255-mask(Rect(Point(1,1),Size(mask.cols-2,mask.rows-2))));
|
||
|
cout << "Recall for the 2nd stage filter = " << (float)countNonZero(tmp_mask) / countNonZero(255-gt) << endl;
|
||
|
}
|
||
|
|
||
|
regions.clear();
|
||
|
|
||
|
}
|