108 lines
3.6 KiB
Python
108 lines
3.6 KiB
Python
|
#!/usr/bin/python
|
||
|
from opencv.cv import *
|
||
|
from opencv.highgui import *
|
||
|
import sys
|
||
|
|
||
|
# Rearrange the quadrants of Fourier image so that the origin is at
|
||
|
# the image center
|
||
|
# src & dst arrays of equal size & type
|
||
|
def cvShiftDFT(src_arr, dst_arr ):
|
||
|
|
||
|
size = cvGetSize(src_arr)
|
||
|
dst_size = cvGetSize(dst_arr)
|
||
|
|
||
|
if(dst_size.width != size.width or
|
||
|
dst_size.height != size.height) :
|
||
|
cvError( CV_StsUnmatchedSizes, "cvShiftDFT", "Source and Destination arrays must have equal sizes", __FILE__, __LINE__ )
|
||
|
|
||
|
if(src_arr is dst_arr):
|
||
|
tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr))
|
||
|
|
||
|
cx = size.width/2
|
||
|
cy = size.height/2 # image center
|
||
|
|
||
|
q1 = cvGetSubRect( src_arr, cvRect(0,0,cx, cy) )
|
||
|
q2 = cvGetSubRect( src_arr, cvRect(cx,0,cx,cy) )
|
||
|
q3 = cvGetSubRect( src_arr, cvRect(cx,cy,cx,cy) )
|
||
|
q4 = cvGetSubRect( src_arr, cvRect(0,cy,cx,cy) )
|
||
|
d1 = cvGetSubRect( src_arr, cvRect(0,0,cx,cy) )
|
||
|
d2 = cvGetSubRect( src_arr, cvRect(cx,0,cx,cy) )
|
||
|
d3 = cvGetSubRect( src_arr, cvRect(cx,cy,cx,cy) )
|
||
|
d4 = cvGetSubRect( src_arr, cvRect(0,cy,cx,cy) )
|
||
|
|
||
|
if(src_arr is not dst_arr):
|
||
|
if( not CV_ARE_TYPES_EQ( q1, d1 )):
|
||
|
cvError( CV_StsUnmatchedFormats, "cvShiftDFT", "Source and Destination arrays must have the same format", __FILE__, __LINE__ )
|
||
|
|
||
|
cvCopy(q3, d1)
|
||
|
cvCopy(q4, d2)
|
||
|
cvCopy(q1, d3)
|
||
|
cvCopy(q2, d4)
|
||
|
|
||
|
else:
|
||
|
cvCopy(q3, tmp)
|
||
|
cvCopy(q1, q3)
|
||
|
cvCopy(tmp, q1)
|
||
|
cvCopy(q4, tmp)
|
||
|
cvCopy(q2, q4)
|
||
|
cvCopy(tmp, q2)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
im = cvLoadImage( sys.argv[1], CV_LOAD_IMAGE_GRAYSCALE)
|
||
|
|
||
|
realInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1)
|
||
|
imaginaryInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1)
|
||
|
complexInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 2)
|
||
|
|
||
|
cvScale(im, realInput, 1.0, 0.0)
|
||
|
cvZero(imaginaryInput)
|
||
|
cvMerge(realInput, imaginaryInput, None, None, complexInput)
|
||
|
|
||
|
dft_M = cvGetOptimalDFTSize( im.height - 1 )
|
||
|
dft_N = cvGetOptimalDFTSize( im.width - 1 )
|
||
|
|
||
|
dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 )
|
||
|
image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1)
|
||
|
image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1)
|
||
|
|
||
|
# copy A to dft_A and pad dft_A with zeros
|
||
|
tmp = cvGetSubRect( dft_A, cvRect(0,0, im.width, im.height))
|
||
|
cvCopy( complexInput, tmp, None )
|
||
|
if(dft_A.width > im.width):
|
||
|
tmp = cvGetSubRect( dft_A, cvRect(im.width,0, dft_N - im.width, im.height))
|
||
|
cvZero( tmp )
|
||
|
|
||
|
# no need to pad bottom part of dft_A with zeros because of
|
||
|
# use nonzero_rows parameter in cvDFT() call below
|
||
|
|
||
|
cvDFT( dft_A, dft_A, CV_DXT_FORWARD, complexInput.height )
|
||
|
|
||
|
cvNamedWindow("win", 0)
|
||
|
cvNamedWindow("magnitude", 0)
|
||
|
cvShowImage("win", im)
|
||
|
|
||
|
# Split Fourier in real and imaginary parts
|
||
|
cvSplit( dft_A, image_Re, image_Im, None, None )
|
||
|
|
||
|
# Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
|
||
|
cvPow( image_Re, image_Re, 2.0)
|
||
|
cvPow( image_Im, image_Im, 2.0)
|
||
|
cvAdd( image_Re, image_Im, image_Re, None)
|
||
|
cvPow( image_Re, image_Re, 0.5 )
|
||
|
|
||
|
# Compute log(1 + Mag)
|
||
|
cvAddS( image_Re, cvScalarAll(1.0), image_Re, None ) # 1 + Mag
|
||
|
cvLog( image_Re, image_Re ) # log(1 + Mag)
|
||
|
|
||
|
|
||
|
# Rearrange the quadrants of Fourier image so that the origin is at
|
||
|
# the image center
|
||
|
cvShiftDFT( image_Re, image_Re )
|
||
|
|
||
|
min, max, pt1, pt2 = cvMinMaxLoc(image_Re)
|
||
|
cvScale(image_Re, image_Re, 1.0/(max-min), 1.0*(-min)/(max-min))
|
||
|
cvShowImage("magnitude", image_Re)
|
||
|
|
||
|
cvWaitKey(0)
|