144 lines
3.8 KiB
Mathematica
144 lines
3.8 KiB
Mathematica
|
#! /usr/bin/env octave
|
||
|
## This program is demonstration for face and object detection using haar-like features.
|
||
|
## The program finds faces in a camera image or video stream and displays a red box around them.
|
||
|
|
||
|
## Original C implementation by: ?
|
||
|
## Python implementation by: Roman Stanchak
|
||
|
## Octave implementation by: Xavier Delacour
|
||
|
addpath("/home/x/opencv2/interfaces/swig/octave");
|
||
|
source("/home/x/opencv2/interfaces/swig/octave/PKG_ADD_template");
|
||
|
debug_on_error(true);
|
||
|
debug_on_warning(true);
|
||
|
crash_dumps_octave_core (0)
|
||
|
cv;
|
||
|
highgui;
|
||
|
|
||
|
|
||
|
## Global Variables
|
||
|
global g;
|
||
|
g.cascade = [];
|
||
|
g.storage = cvCreateMemStorage(0);
|
||
|
g.cascade_name = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||
|
g.input_name = "../c/lena.jpg";
|
||
|
|
||
|
## Parameters for haar detection
|
||
|
## From the API:
|
||
|
## The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned
|
||
|
## for accurate yet slow object detection. For a faster operation on real video
|
||
|
## images the settings are:
|
||
|
## scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING,
|
||
|
## min_size=<minimum possible face size
|
||
|
g.min_size = cvSize(20,20);
|
||
|
g.image_scale = 1.3;
|
||
|
g.haar_scale = 1.2;
|
||
|
g.min_neighbors = 2;
|
||
|
g.haar_flags = 0;
|
||
|
|
||
|
|
||
|
function detect_and_draw( img )
|
||
|
global g;
|
||
|
global cv;
|
||
|
|
||
|
gray = cvCreateImage( cvSize(img.width,img.height), 8, 1 );
|
||
|
small_img = cvCreateImage( cvSize( cvRound (img.width/g.image_scale),
|
||
|
cvRound (img.height/g.image_scale)), 8, 1 );
|
||
|
cvCvtColor( img, gray, cv.CV_BGR2GRAY );
|
||
|
cvResize( gray, small_img, cv.CV_INTER_LINEAR );
|
||
|
|
||
|
cvEqualizeHist( small_img, small_img );
|
||
|
|
||
|
cvClearMemStorage( g.storage );
|
||
|
|
||
|
if( swig_this(g.cascade) )
|
||
|
tic
|
||
|
faces = cvHaarDetectObjects( small_img, g.cascade, g.storage,
|
||
|
g.haar_scale, g.min_neighbors, g.haar_flags, g.min_size );
|
||
|
toc
|
||
|
if (swig_this(faces))
|
||
|
for r = CvSeq_map(faces),
|
||
|
r = r{1};
|
||
|
pt1 = cvPoint( int32(r.x*g.image_scale), int32(r.y*g.image_scale));
|
||
|
pt2 = cvPoint( int32((r.x+r.width)*g.image_scale), int32((r.y+r.height)*g.image_scale) );
|
||
|
cvRectangle( img, pt1, pt2, CV_RGB(255,0,0), 3, 8, 0 );
|
||
|
endfor
|
||
|
endif
|
||
|
endif
|
||
|
|
||
|
cvShowImage( "result", img );
|
||
|
endfunction
|
||
|
|
||
|
|
||
|
if (size(argv, 2) > 0 && (strcmp(argv(){1}, "--help") || strcmp(argv(){1}, "-h")))
|
||
|
printf("Usage: facedetect --cascade \"<cascade_path>\" [filename|camera_index]\n");
|
||
|
exit(-1);
|
||
|
endif
|
||
|
|
||
|
if (size(argv, 2) >= 2)
|
||
|
if (strcmp(argv(){1},"--cascade"))
|
||
|
g.cascade_name = argv(){2};
|
||
|
if (size(argv, 2) >= 3)
|
||
|
g.input_name = argv(){3};
|
||
|
endif
|
||
|
endif
|
||
|
elseif (size(argv, 2) == 1)
|
||
|
g.input_name = argv(){1};
|
||
|
endif
|
||
|
|
||
|
## the OpenCV API says this function is obsolete, but we can't
|
||
|
## cast the output of cvLoad to a HaarClassifierCascade, so use this anyways
|
||
|
## the size parameter is ignored
|
||
|
g.cascade = cvLoadHaarClassifierCascade( g.cascade_name, cvSize(1,1) );
|
||
|
|
||
|
if (!swig_this(g.cascade))
|
||
|
printf("ERROR: Could not load classifier cascade\n");
|
||
|
exit(-1);
|
||
|
endif
|
||
|
|
||
|
g.input_name
|
||
|
|
||
|
if (all(isdigit(g.input_name)))
|
||
|
capture = cvCreateCameraCapture( sscanf(g.input_name, "%i") );
|
||
|
else
|
||
|
capture = cvCreateFileCapture( g.input_name );
|
||
|
endif
|
||
|
|
||
|
capture
|
||
|
|
||
|
cvNamedWindow( "result", 1 );
|
||
|
|
||
|
if( swig_this(capture) )
|
||
|
frame_copy = [];
|
||
|
while (true)
|
||
|
frame = cvQueryFrame( capture );
|
||
|
if( ! swig_this(frame) )
|
||
|
cvWaitKey(0);
|
||
|
endif
|
||
|
if( !swig_this(frame_copy) )
|
||
|
frame_copy = cvCreateImage( cvSize(frame.width,frame.height),
|
||
|
IPL_DEPTH_8U, frame.nChannels );
|
||
|
endif
|
||
|
if( frame.origin == IPL_ORIGIN_TL )
|
||
|
cvCopy( frame, frame_copy );
|
||
|
else
|
||
|
cvFlip( frame, frame_copy, 0 );
|
||
|
endif
|
||
|
|
||
|
detect_and_draw( frame_copy );
|
||
|
|
||
|
if( cvWaitKey( 10 ) == 27 )
|
||
|
break;
|
||
|
endif
|
||
|
endwhile
|
||
|
|
||
|
else
|
||
|
image = cvLoadImage( g.input_name, 1 );
|
||
|
|
||
|
if( swig_this(image) )
|
||
|
|
||
|
detect_and_draw( image );
|
||
|
cvWaitKey(0);
|
||
|
endif
|
||
|
endif
|
||
|
|
||
|
cvDestroyWindow("result");
|