opencv/samples/gpu/driver_api_multi.cpp

145 lines
3.5 KiB
C++
Raw Normal View History

/* This sample demonstrates the way you can perform independed tasks
on the different GPUs */
2011-01-28 17:01:32 +01:00
// Disable some warnings which are caused with CUDA headers
2011-02-14 14:13:05 +01:00
#if defined(_MSC_VER)
2011-01-28 17:01:32 +01:00
#pragma warning(disable: 4201 4408 4100)
2011-02-14 14:13:05 +01:00
#endif
2011-01-28 17:01:32 +01:00
#include <iostream>
#include <cvconfig.h>
#include <opencv2/core/core.hpp>
#include <opencv2/gpu/gpu.hpp>
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB)
int main()
{
#if !defined(HAVE_CUDA)
std::cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true).\n";
2011-01-28 17:01:32 +01:00
#endif
#if !defined(HAVE_TBB)
std::cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n";
2011-01-28 17:01:32 +01:00
#endif
return 0;
}
#else
#include <cuda.h>
#include <cuda_runtime.h>
#include "opencv2/core/internal.hpp" // For TBB wrappers
using namespace std;
using namespace cv;
using namespace cv::gpu;
struct Worker { void operator()(int device_id) const; };
void destroyContexts();
2011-02-14 16:09:45 +01:00
#define safeCall(expr) safeCall_(expr, #expr, __FILE__, __LINE__)
inline void safeCall_(int code, const char* expr, const char* file, int line)
{
2011-02-14 16:36:07 +01:00
if (code != CUDA_SUCCESS)
{
std::cout << "CUDA driver API error: code " << code << ", expr " << expr
2011-02-14 16:36:07 +01:00
<< ", file " << file << ", line " << line << endl;
destroyContexts();
exit(-1);
}
2011-01-28 17:01:32 +01:00
}
// Each GPU is associated with its own context
CUcontext contexts[2];
int main()
{
int num_devices = getCudaEnabledDeviceCount();
if (num_devices < 2)
2011-01-28 17:01:32 +01:00
{
std::cout << "Two or more GPUs are required\n";
2011-01-28 17:01:32 +01:00
return -1;
}
for (int i = 0; i < num_devices; ++i)
{
DeviceInfo dev_info(i);
if (!dev_info.isCompatible())
{
std::cout << "GPU module isn't built for GPU #" << i << " ("
<< dev_info.name() << ", CC " << dev_info.majorVersion()
<< dev_info.minorVersion() << "\n";
return -1;
}
}
2011-02-10 15:33:02 +01:00
// Init CUDA Driver API
safeCall(cuInit(0));
2011-01-28 17:01:32 +01:00
// Create context for GPU #0
2011-01-28 17:01:32 +01:00
CUdevice device;
safeCall(cuDeviceGet(&device, 0));
safeCall(cuCtxCreate(&contexts[0], 0, device));
2011-01-28 17:01:32 +01:00
CUcontext prev_context;
safeCall(cuCtxPopCurrent(&prev_context));
2011-01-28 17:01:32 +01:00
// Create context for GPU #1
safeCall(cuDeviceGet(&device, 1));
safeCall(cuCtxCreate(&contexts[1], 0, device));
2011-01-28 17:01:32 +01:00
safeCall(cuCtxPopCurrent(&prev_context));
2011-01-28 17:01:32 +01:00
// Execute calculation in two threads using two GPUs
int devices[] = {0, 1};
parallel_do(devices, devices + 2, Worker());
destroyContexts();
return 0;
}
void Worker::operator()(int device_id) const
{
// Set the proper context
safeCall(cuCtxPushCurrent(contexts[device_id]));
2011-01-28 17:01:32 +01:00
Mat src(1000, 1000, CV_32F);
Mat dst;
RNG rng(0);
rng.fill(src, RNG::UNIFORM, 0, 1);
// CPU works
transpose(src, dst);
// GPU works
2011-01-28 17:01:32 +01:00
GpuMat d_src(src);
GpuMat d_dst;
transpose(d_src, d_dst);
// Check results
bool passed = norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
<< (passed ? "passed" : "FAILED") << endl;
2011-01-28 17:01:32 +01:00
// Deallocate data here, otherwise deallocation will be performed
// after context is extracted from the stack
d_src.release();
d_dst.release();
CUcontext prev_context;
safeCall(cuCtxPopCurrent(&prev_context));
2011-01-28 17:01:32 +01:00
}
void destroyContexts()
{
safeCall(cuCtxDestroy(contexts[0]));
safeCall(cuCtxDestroy(contexts[1]));
2011-01-28 17:01:32 +01:00
}
#endif