opencv/samples/cpp/chamfer.cpp

59 lines
1.5 KiB
C++
Raw Normal View History

#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/contrib/contrib.hpp>
#include <iostream>
using namespace cv;
using namespace std;
2010-12-03 10:06:41 +00:00
void help()
{
cout <<
2010-12-04 08:29:00 +00:00
"\nThis program demonstrates Chamfer matching -- computing a distance between an \n"
2010-12-03 10:06:41 +00:00
"edge template and a query edge image.\n"
"Call:\n"
2010-12-03 10:07:18 +00:00
"./chamfer [<image edge map> <template edge map>]\n"
2010-12-03 10:06:41 +00:00
"By default\n"
2010-12-03 10:07:18 +00:00
"the inputs are ./chamfer logo_in_clutter.png logo.png\n"<< endl;
2010-12-03 10:06:41 +00:00
}
int main( int argc, char** argv )
{
if( argc != 1 && argc != 3 )
{
2010-12-03 10:06:41 +00:00
help();
return 0;
}
Mat img = imread(argc == 3 ? argv[1] : "logo_in_clutter.png", 0);
Mat cimg;
cvtColor(img, cimg, CV_GRAY2BGR);
Mat tpl = imread(argc == 3 ? argv[2] : "logo.png", 0);
// if the image and the template are not edge maps but normal grayscale images,
// you might want to uncomment the lines below to produce the maps. You can also
// run Sobel instead of Canny.
// Canny(img, img, 5, 50, 3);
// Canny(tpl, tpl, 5, 50, 3);
vector<vector<Point> > results;
vector<float> costs;
int best = chamerMatching( img, tpl, results, costs );
if( best < 0 )
{
cout << "not found;\n";
return 0;
}
size_t i, n = results[best].size();
for( i = 0; i < n; i++ )
{
Point pt = results[best][i];
if( pt.inside(Rect(0, 0, cimg.cols, cimg.rows)) )
cimg.at<Vec3b>(pt) = Vec3b(0, 255, 0);
}
imshow("result", cimg);
waitKey();
return 0;
}