opencv/modules/ml/src/gbt.cpp

1129 lines
35 KiB
C++
Raw Normal View History

#include "precomp.hpp"
#include <string>
#include <time.h>
using namespace std;
#define pCvSeq CvSeq*
#define pCvDTreeNode CvDTreeNode*
#define CV_CMP_FLOAT(a,b) ((a) < (b))
static CV_IMPLEMENT_QSORT_EX( icvSortFloat, float, CV_CMP_FLOAT, float)
//===========================================================================
string ToString(int i)
{
stringstream tmp;
tmp << i;
return tmp.str();
}
//===========================================================================
int get_len(const CvMat* mat)
{
return (mat->cols > mat->rows) ? mat->cols : mat->rows;
}
//===========================================================================
//----------------------------- CvGBTreesParams -----------------------------
//===========================================================================
CvGBTreesParams::CvGBTreesParams()
: CvDTreeParams( 3, 10, 0, true, 10, 0, false, false, 0 )
{
weak_count = 50;
loss_function_type = CvGBTrees::SQUARED_LOSS;
subsample_portion = 1.0f;
shrinkage = 1.0f;
}
//===========================================================================
CvGBTreesParams::CvGBTreesParams( int _loss_function_type, int _weak_count,
float _shrinkage, float _subsample_portion,
int _max_depth, bool _use_surrogates )
: CvDTreeParams( 3, 10, 0, true, 10, 0, false, false, 0 )
{
loss_function_type = _loss_function_type;
weak_count = _weak_count;
shrinkage = _shrinkage;
subsample_portion = _subsample_portion;
max_depth = _max_depth;
use_surrogates = _use_surrogates;
}
//===========================================================================
//------------------------------- CvGBTrees ---------------------------------
//===========================================================================
CvGBTrees::CvGBTrees()
{
data = 0;
weak = 0;
default_model_name = "my_boost_tree";
orig_response = sum_response = sum_response_tmp = 0;
weak_eval = subsample_train = subsample_test = 0;
missing = sample_idx = 0;
class_labels = 0;
class_count = 1;
delta = 0.0f;
clear();
}
//===========================================================================
void CvGBTrees::clear()
{
if( weak )
{
CvSeqReader reader;
CvSlice slice = CV_WHOLE_SEQ;
int weak_count = cvSliceLength( slice, weak[class_count-1] );
CvDTree* tree;
//data->shared = false;
for (int i=0; i<class_count; ++i)
{
if ((weak[i]) && (weak_count))
{
cvStartReadSeq( weak[i], &reader );
cvSetSeqReaderPos( &reader, slice.start_index );
for (int j=0; j<weak_count; ++j)
{
CV_READ_SEQ_ELEM( tree, reader );
//tree->clear();
delete tree;
tree = 0;
}
}
}
for (int i=0; i<class_count; ++i)
if (weak[i]) cvReleaseMemStorage( &(weak[i]->storage) );
delete[] weak;
}
if (data)
{
data->shared = false;
delete data;
}
weak = 0;
data = 0;
delta = 0.0f;
cvReleaseMat( &orig_response );
cvReleaseMat( &sum_response );
cvReleaseMat( &sum_response_tmp );
cvReleaseMat( &weak_eval );
cvReleaseMat( &subsample_train );
cvReleaseMat( &subsample_test );
cvReleaseMat( &sample_idx );
cvReleaseMat( &missing );
cvReleaseMat( &class_labels );
}
//===========================================================================
CvGBTrees::~CvGBTrees()
{
clear();
}
//===========================================================================
CvGBTrees::CvGBTrees( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx,
const CvMat* _sample_idx, const CvMat* _var_type,
const CvMat* _missing_mask, CvGBTreesParams _params )
{
weak = 0;
data = 0;
default_model_name = "my_boost_tree";
orig_response = sum_response = sum_response_tmp = 0;
weak_eval = subsample_train = subsample_test = 0;
missing = sample_idx = 0;
class_labels = 0;
class_count = 1;
delta = 0.0f;
train( _train_data, _tflag, _responses, _var_idx, _sample_idx,
_var_type, _missing_mask, _params );
}
//===========================================================================
bool CvGBTrees::problem_type() const
{
switch (params.loss_function_type)
{
case DEVIANCE_LOSS: return false;
default: return true;
}
}
//===========================================================================
bool
CvGBTrees::train( CvMLData* data, CvGBTreesParams params, bool update )
{
bool result;
result = train ( data->get_values(), CV_ROW_SAMPLE,
data->get_responses(), data->get_var_idx(),
data->get_train_sample_idx(), data->get_var_types(),
data->get_missing(), params, update);
//update is not supported
return result;
}
//===========================================================================
bool
CvGBTrees::train( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx,
const CvMat* _sample_idx, const CvMat* _var_type,
const CvMat* _missing_mask,
CvGBTreesParams _params, bool /*_update*/ ) //update is not supported
{
CvMemStorage* storage = 0;
params = _params;
bool is_regression = problem_type();
clear();
int len = get_len(_responses);
CvMat* new_responses = cvCreateMat( len, 1, CV_32F);
cvZero(new_responses);
data = new CvDTreeTrainData( _train_data, _tflag, new_responses, _var_idx,
_sample_idx, _var_type, _missing_mask, _params, true, true );
if (_missing_mask)
{
missing = cvCreateMat(_missing_mask->rows, _missing_mask->cols,
_missing_mask->type);
cvCopy( _missing_mask, missing);
}
orig_response = cvCreateMat( _responses->rows, _responses->cols,
_responses->type );
cvCopy( _responses, orig_response);
orig_response->step = CV_ELEM_SIZE(_responses->type);
/*
if (!is_regression)
{
int max_label = -1;
for (int i=0; i<get_len(orig_response); ++i)
if (max_label < orig_response->data.fl[i])
max_label = int(orig_response->data.fl[i]);
max_label++;
class_labels = cvCreateMat(1, max_label, CV_32S);
cvZero(class_labels);
for (int i=0; i<get_len(orig_response); ++i)
class_labels->data.i[int(orig_response->data.fl[i])] = 1;
class_count = 0;
for (int i=0; i<max_label; ++i)
if (class_labels->data.i[i])
class_labels->data.i[i] = ++class_count;
}
*/
if (!is_regression)
{
class_count = 0;
unsigned char * mask = new unsigned char[get_len(orig_response)];
for (int i=0; i<get_len(orig_response); ++i)
mask[i] = 0;
for (int i=0; i<get_len(orig_response); ++i)
if (!mask[i])
{
class_count++;
for (int j=i; j<get_len(orig_response); ++j)
if (int(orig_response->data.fl[j]) == int(orig_response->data.fl[i]))
mask[j] = 1;
}
delete[] mask;
class_labels = cvCreateMat(1, class_count, CV_32S);
class_labels->data.i[0] = int(orig_response->data.fl[0]);
int j = 1;
for (int i=1; i<get_len(orig_response); ++i)
{
int k = 0;
while ((int(orig_response->data.fl[i]) - class_labels->data.i[k]) && (k<j))
k++;
if (k == j)
{
class_labels->data.i[k] = int(orig_response->data.fl[i]);
j++;
}
}
}
data->is_classifier = false;
if (_sample_idx)
{
sample_idx = cvCreateMat( _sample_idx->rows, _sample_idx->cols,
_sample_idx->type );
cvCopy( _sample_idx, sample_idx);
icvSortFloat(sample_idx->data.fl, get_len(sample_idx), 0);
}
else
{
int n = (_tflag == CV_ROW_SAMPLE) ? _train_data->rows
: _train_data->cols;
sample_idx = cvCreateMat( 1, n, CV_32S );
for (int i=0; i<n; ++i)
sample_idx->data.i[i] = i;
}
sum_response = cvCreateMat(class_count, len, CV_32F);
sum_response_tmp = cvCreateMat(class_count, len, CV_32F);
cvZero(sum_response);
delta = 0.0f;
if (is_regression) base_value = find_optimal_value(sample_idx);
else base_value = 0.0f;
cvSet( sum_response, cvScalar(base_value) );
weak = new pCvSeq[class_count];
for (int i=0; i<class_count; ++i)
{
storage = cvCreateMemStorage();
weak[i] = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvDTree*), storage );
storage = 0;
}
// subsample params and data
rng = &cv::theRNG();
int samples_count = get_len(sample_idx);
//if ( params.subsample_portion > 1) params.subsample_portion = 1;
//if ( params.subsample_portion < 0) params.subsample_portion = 1;
params.subsample_portion = params.subsample_portion <= FLT_EPSILON ||
1 - params.subsample_portion <= FLT_EPSILON
? 1 : params.subsample_portion;
int train_sample_count = cvFloor(params.subsample_portion * samples_count);
if (train_sample_count == 0)
train_sample_count = samples_count;
int test_sample_count = samples_count - train_sample_count;
int* idx_data = new int[samples_count];
subsample_train = cvCreateMatHeader( 1, train_sample_count, CV_32SC1 );
*subsample_train = cvMat( 1, train_sample_count, CV_32SC1, idx_data );
if (test_sample_count)
{
subsample_test = cvCreateMatHeader( 1, test_sample_count, CV_32SC1 );
*subsample_test = cvMat( 1, test_sample_count, CV_32SC1,
idx_data + train_sample_count );
}
// training procedure
for ( int i=0; i < params.weak_count; ++i )
{
for ( int m=0; m < class_count; ++m )
{
do_subsample();
find_gradient(m);
CvDTree* tree = new CvDTree;
tree->train( data, subsample_train );
change_values(tree, m);
if (subsample_test)
{
CvMat x;
CvMat x_miss;
int* sample_data = sample_idx->data.i;
int* subsample_data = subsample_test->data.i;
int s_step = (sample_idx->cols > sample_idx->rows) ? 1
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type);
for (int j=0; j<get_len(subsample_test); ++j)
{
for (int k=0; k<class_count; ++k)
{
int idx = *(sample_data + subsample_data[j]*s_step);
float res = 0.0f;
cvGetRow( data->train_data, &x, idx);
if (missing)
{
cvGetRow( missing, &x_miss, idx);
res = (float)tree->predict(&x, &x_miss)->value;
}
else
{
res = (float)tree->predict(&x)->value;
}
sum_response_tmp->data.fl[idx + k*len] =
sum_response->data.fl[idx + k*len] +
params.shrinkage * res;
}
}
}
cvSeqPush( weak[m], &tree );
tree = 0;
} // m=0..class_count
CvMat* tmp;
tmp = sum_response_tmp;
sum_response_tmp = sum_response;
sum_response = tmp;
tmp = 0;
} // i=0..params.weak_count
delete[] idx_data;
cvReleaseMat(&new_responses);
data->free_train_data();
return true;
} // CvGBTrees::train(...)
//===========================================================================
float Sign(float x)
{
if (x<0.0f) return -1.0f;
else if (x>0.0f) return 1.0f;
return 0.0f;
}
//===========================================================================
void CvGBTrees::find_gradient(const int k)
{
int* sample_data = sample_idx->data.i;
int* subsample_data = subsample_train->data.i;
float* grad_data = data->responses->data.fl;
float* resp_data = orig_response->data.fl;
float* current_data = sum_response->data.fl;
switch (params.loss_function_type)
// loss_function_type in
// {SQUARED_LOSS, ABSOLUTE_LOSS, HUBER_LOSS, DEVIANCE_LOSS}
{
case SQUARED_LOSS:
{
for (int i=0; i<get_len(subsample_train); ++i)
{
int s_step = (sample_idx->cols > sample_idx->rows) ? 1
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type);
int idx = *(sample_data + subsample_data[i]*s_step);
grad_data[idx] = resp_data[idx] - current_data[idx];
}
}; break;
case ABSOLUTE_LOSS:
{
for (int i=0; i<get_len(subsample_train); ++i)
{
int s_step = (sample_idx->cols > sample_idx->rows) ? 1
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type);
int idx = *(sample_data + subsample_data[i]*s_step);
grad_data[idx] = Sign(resp_data[idx] - current_data[idx]);
}
}; break;
case HUBER_LOSS:
{
float alpha = 0.2f;
int n = get_len(subsample_train);
int s_step = (sample_idx->cols > sample_idx->rows) ? 1
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type);
float* residuals = new float[n];
for (int i=0; i<n; ++i)
{
int idx = *(sample_data + subsample_data[i]*s_step);
residuals[i] = fabs(resp_data[idx] - current_data[idx]);
}
icvSortFloat(residuals, n, 0.0f);
delta = residuals[int(ceil(n*alpha))];
for (int i=0; i<n; ++i)
{
int idx = *(sample_data + subsample_data[i]*s_step);
float r = resp_data[idx] - current_data[idx];
grad_data[idx] = (fabs(r) > delta) ? delta*Sign(r) : r;
}
delete[] residuals;
}; break;
case DEVIANCE_LOSS:
{
for (int i=0; i<get_len(subsample_train); ++i)
{
double exp_fk = 0;
double exp_sfi = 0;
int s_step = (sample_idx->cols > sample_idx->rows) ? 1
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type);
int idx = *(sample_data + subsample_data[i]*s_step);
for (int j=0; j<class_count; ++j)
{
double res;
res = current_data[idx + j*sum_response->cols];
res = exp(res);
if (j == k) exp_fk = res;
exp_sfi += res;
}
int orig_label = int(resp_data[idx]);
/*
grad_data[idx] = (float)(!(k-class_labels->data.i[orig_label]+1)) -
(float)(exp_fk / exp_sfi);
*/
int ensemble_label = 0;
while (class_labels->data.i[ensemble_label] - orig_label)
ensemble_label++;
grad_data[idx] = (float)(!(k-ensemble_label)) -
(float)(exp_fk / exp_sfi);
}
}; break;
default: break;
}
} // CvGBTrees::find_gradient(...)
//===========================================================================
void CvGBTrees::change_values(CvDTree* tree, const int _k)
{
CvDTreeNode** predictions = new pCvDTreeNode[get_len(subsample_train)];
int* sample_data = sample_idx->data.i;
int* subsample_data = subsample_train->data.i;
int s_step = (sample_idx->cols > sample_idx->rows) ? 1
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type);
CvMat x;
CvMat miss_x;
for (int i=0; i<get_len(subsample_train); ++i)
{
int idx = *(sample_data + subsample_data[i]*s_step);
cvGetRow( data->train_data, &x, idx);
if (missing)
{
cvGetRow( missing, &miss_x, idx);
predictions[i] = tree->predict(&x, &miss_x);
}
else
predictions[i] = tree->predict(&x);
}
CvDTreeNode** leaves;
int leaves_count = 0;
leaves = GetLeaves( tree, leaves_count);
for (int i=0; i<leaves_count; ++i)
{
int samples_in_leaf = 0;
for (int j=0; j<get_len(subsample_train); ++j)
{
if (leaves[i] == predictions[j]) samples_in_leaf++;
}
if (!samples_in_leaf) // It should not be done anyways! but...
{
leaves[i]->value = 0.0;
continue;
}
CvMat* leaf_idx = cvCreateMat(1, samples_in_leaf, CV_32S);
int* leaf_idx_data = leaf_idx->data.i;
for (int j=0; j<get_len(subsample_train); ++j)
{
int idx = *(sample_data + subsample_data[j]*s_step);
if (leaves[i] == predictions[j])
*leaf_idx_data++ = idx;
}
float value = find_optimal_value(leaf_idx);
leaves[i]->value = value;
leaf_idx_data = leaf_idx->data.i;
int len = sum_response_tmp->cols;
for (int j=0; j<get_len(leaf_idx); ++j)
{
int idx = leaf_idx_data[j];
sum_response_tmp->data.fl[idx + _k*len] =
sum_response->data.fl[idx + _k*len] +
params.shrinkage * value;
}
leaf_idx_data = 0;
cvReleaseMat(&leaf_idx);
}
// releasing the memory
for (int i=0; i<get_len(subsample_train); ++i)
{
predictions[i] = 0;
}
delete[] predictions;
for (int i=0; i<leaves_count; ++i)
{
leaves[i] = 0;
}
delete[] leaves;
}
//===========================================================================
/*
void CvGBTrees::change_values(CvDTree* tree, const int _k)
{
CvDTreeNode** leaves;
int leaves_count = 0;
leaves = GetLeaves( tree, leaves_count);
for (int i=0; i<leaves_count; ++i)
{
int n = leaves[i]->sample_count;
int* leaf_idx_data = new int[n];
data->get_sample_indices(leaves[i], leaf_idx_data);
CvMat* leaf_idx = 0;
cvInitMatHeader(leaf_idx, n, 1, CV_32S, leaf_idx_data);
float value = find_optimal_value(leaf_idx);
leaves[i]->value = value;
int len = sum_response_tmp->cols;
for (int j=0; j<n; ++j)
{
int idx = leaf_idx_data[j] + _k*len;
sum_response_tmp->data.fl[idx] = sum_response->data.fl[idx] +
params.shrinkage * value;
}
leaf_idx_data = 0;
cvReleaseMat(&leaf_idx);
}
// releasing the memory
for (int i=0; i<leaves_count; ++i)
{
leaves[i] = 0;
}
delete[] leaves;
} //change_values(...);
*/
//===========================================================================
float CvGBTrees::find_optimal_value( const CvMat* _Idx )
{
double gamma = (double)0.0;
int* idx = _Idx->data.i;
float* resp_data = orig_response->data.fl;
float* cur_data = sum_response->data.fl;
int n = get_len(_Idx);
switch (params.loss_function_type)
// SQUARED_LOSS=0, ABSOLUTE_LOSS=1, HUBER_LOSS=3, DEVIANCE_LOSS=4
{
case SQUARED_LOSS:
{
for (int i=0; i<n; ++i)
gamma += resp_data[idx[i]] - cur_data[idx[i]];
gamma /= (double)n;
}; break;
case ABSOLUTE_LOSS:
{
float* residuals = new float[n];
for (int i=0; i<n; ++i, ++idx)
residuals[i] = (resp_data[*idx] - cur_data[*idx]);
icvSortFloat(residuals, n, 0.0f);
if (n % 2)
gamma = residuals[n/2];
else gamma = (residuals[n/2-1] + residuals[n/2]) / 2.0f;
delete[] residuals;
}; break;
case HUBER_LOSS:
{
float* residuals = new float[n];
for (int i=0; i<n; ++i, ++idx)
residuals[i] = (resp_data[*idx] - cur_data[*idx]);
icvSortFloat(residuals, n, 0.0f);
int n_half = n >> 1;
float r_median = (n == n_half<<1) ?
(residuals[n_half-1] + residuals[n_half]) / 2.0f :
residuals[n_half];
for (int i=0; i<n; ++i)
{
float dif = residuals[i] - r_median;
gamma += (delta < fabs(dif)) ? Sign(dif)*delta : dif;
}
gamma /= (double)n;
gamma += r_median;
delete[] residuals;
}; break;
case DEVIANCE_LOSS:
{
float* grad_data = data->responses->data.fl;
double tmp1 = 0;
double tmp2 = 0;
double tmp = 0;
for (int i=0; i<n; ++i)
{
tmp = grad_data[idx[i]];
tmp1 += tmp;
tmp2 += fabs(tmp)*(1-fabs(tmp));
};
if (tmp2 == 0)
{
tmp2 = 1;
}
gamma = ((double)(class_count-1)) / (double)class_count * (tmp1/tmp2);
}; break;
default: break;
}
return float(gamma);
} // CvGBTrees::find_optimal_value
//===========================================================================
void CvGBTrees::leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node )
{
if (node->left != NULL) leaves_get(leaves, count, node->left);
if (node->right != NULL) leaves_get(leaves, count, node->right);
if ((node->left == NULL) && (node->right == NULL))
leaves[count++] = node;
}
//---------------------------------------------------------------------------
CvDTreeNode** CvGBTrees::GetLeaves( const CvDTree* dtree, int& len )
{
len = 0;
2010-11-25 17:55:46 +01:00
CvDTreeNode** leaves = new pCvDTreeNode[(size_t)1 << params.max_depth];
leaves_get(leaves, len, const_cast<pCvDTreeNode>(dtree->get_root()));
return leaves;
}
//===========================================================================
void CvGBTrees::do_subsample()
{
int n = get_len(sample_idx);
int* idx = subsample_train->data.i;
for (int i = 0; i < n; i++ )
idx[i] = i;
if (subsample_test)
for (int i = 0; i < n; i++)
{
int a = (*rng)(n);
int b = (*rng)(n);
int t;
CV_SWAP( idx[a], idx[b], t );
}
/*
int n = get_len(sample_idx);
if (subsample_train == 0)
subsample_train = cvCreateMat(1, n, CV_32S);
int* subsample_data = subsample_train->data.i;
for (int i=0; i<n; ++i)
subsample_data[i] = i;
subsample_test = 0;
*/
}
//===========================================================================
float CvGBTrees::predict( const CvMat* _sample, const CvMat* _missing,
2010-11-25 17:55:46 +01:00
CvMat* /*weak_responses*/, CvSlice slice, int k) const
{
float result = 0.0f;
if (!weak) return 0.0f;
float* sum = new float[class_count];
for (int i=0; i<class_count; ++i)
sum[i] = base_value;
CvSeqReader reader;
int weak_count = cvSliceLength( slice, weak[class_count-1] );
CvDTree* tree;
for (int i=0; i<class_count; ++i)
{
if ((weak[i]) && (weak_count))
{
cvStartReadSeq( weak[i], &reader );
cvSetSeqReaderPos( &reader, slice.start_index );
for (int j=0; j<weak_count; ++j)
{
CV_READ_SEQ_ELEM( tree, reader );
sum[i] += params.shrinkage *
(float)(tree->predict(_sample, _missing)->value);
}
}
}
if (class_count == 1)
{
result = sum[0];
delete[] sum;
return result;
}
if ((k>=0) && (k<class_count))
{
result = sum[k];
delete[] sum;
return result;
}
float max = sum[0];
int class_label = 0;
for (int i=1; i<class_count; ++i)
if (sum[i] > max)
{
max = sum[i];
class_label = i;
}
delete[] sum;
/*
int orig_class_label = -1;
for (int i=0; i<get_len(class_labels); ++i)
if (class_labels->data.i[i] == class_label+1)
orig_class_label = i;
*/
int orig_class_label = class_labels->data.i[class_label];
return float(orig_class_label);
}
//===========================================================================
void CvGBTrees::write_params( CvFileStorage* fs ) const
{
const char* loss_function_type_str =
params.loss_function_type == SQUARED_LOSS ? "SquaredLoss" :
params.loss_function_type == ABSOLUTE_LOSS ? "AbsoluteLoss" :
params.loss_function_type == HUBER_LOSS ? "HuberLoss" :
params.loss_function_type == DEVIANCE_LOSS ? "DevianceLoss" : 0;
if( loss_function_type_str )
cvWriteString( fs, "loss_function", loss_function_type_str );
else
cvWriteInt( fs, "loss_function", params.loss_function_type );
cvWriteInt( fs, "ensemble_length", params.weak_count );
cvWriteReal( fs, "shrinkage", params.shrinkage );
cvWriteReal( fs, "subsample_portion", params.subsample_portion );
//cvWriteInt( fs, "max_tree_depth", params.max_depth );
//cvWriteString( fs, "use_surrogate_splits", params.use_surrogates ? "true" : "false");
if (class_labels) cvWrite( fs, "class_labels", class_labels);
data->is_classifier = !problem_type();
data->write_params( fs );
data->is_classifier = 0;
}
//===========================================================================
void CvGBTrees::read_params( CvFileStorage* fs, CvFileNode* fnode )
{
CV_FUNCNAME( "CvGBTrees::read_params" );
__BEGIN__;
CvFileNode* temp;
if( !fnode || !CV_NODE_IS_MAP(fnode->tag) )
return;
data = new CvDTreeTrainData();
CV_CALL( data->read_params(fs, fnode));
data->shared = true;
params.max_depth = data->params.max_depth;
params.min_sample_count = data->params.min_sample_count;
params.max_categories = data->params.max_categories;
params.priors = data->params.priors;
params.regression_accuracy = data->params.regression_accuracy;
params.use_surrogates = data->params.use_surrogates;
temp = cvGetFileNodeByName( fs, fnode, "loss_function" );
if( !temp )
EXIT;
if( temp && CV_NODE_IS_STRING(temp->tag) )
{
const char* loss_function_type_str = cvReadString( temp, "" );
params.loss_function_type = strcmp( loss_function_type_str, "SquaredLoss" ) == 0 ? SQUARED_LOSS :
strcmp( loss_function_type_str, "AbsoluteLoss" ) == 0 ? ABSOLUTE_LOSS :
strcmp( loss_function_type_str, "HuberLoss" ) == 0 ? HUBER_LOSS :
strcmp( loss_function_type_str, "DevianceLoss" ) == 0 ? DEVIANCE_LOSS : -1;
}
else
params.loss_function_type = cvReadInt( temp, -1 );
if( params.loss_function_type < SQUARED_LOSS || params.loss_function_type > DEVIANCE_LOSS || params.loss_function_type == 2)
CV_ERROR( CV_StsBadArg, "Unknown loss function" );
params.weak_count = cvReadIntByName( fs, fnode, "ensemble_length" );
params.shrinkage = (float)cvReadRealByName( fs, fnode, "shrinkage", 0.1 );
params.subsample_portion = (float)cvReadRealByName( fs, fnode, "subsample_portion", 1.0 );
if (data->is_classifier)
{
class_labels = (CvMat*)cvReadByName( fs, fnode, "class_labels" );
if( class_labels && !CV_IS_MAT(class_labels))
CV_ERROR( CV_StsParseError, "class_labels must stored as a matrix");
}
data->is_classifier = 0;
__END__;
}
void CvGBTrees::write( CvFileStorage* fs, const char* name ) const
{
CV_FUNCNAME( "CvGBTrees::write" );
__BEGIN__;
CvSeqReader reader;
int i;
std::string s;
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_GBT );
if( !weak )
CV_ERROR( CV_StsBadArg, "The model has not been trained yet" );
write_params( fs );
cvWriteReal( fs, "base_value", base_value);
cvWriteInt( fs, "class_count", class_count);
for ( int j=0; j < class_count; ++j )
{
s = "trees_";
s += ToString(j);
cvStartWriteStruct( fs, s.c_str(), CV_NODE_SEQ );
cvStartReadSeq( weak[j], &reader );
for( i = 0; i < weak[j]->total; i++ )
{
CvDTree* tree;
CV_READ_SEQ_ELEM( tree, reader );
cvStartWriteStruct( fs, 0, CV_NODE_MAP );
tree->write( fs );
cvEndWriteStruct( fs );
}
cvEndWriteStruct( fs );
}
cvEndWriteStruct( fs );
__END__;
}
//===========================================================================
void CvGBTrees::read( CvFileStorage* fs, CvFileNode* node )
{
CV_FUNCNAME( "CvGBTrees::read" );
__BEGIN__;
CvSeqReader reader;
CvFileNode* trees_fnode;
CvMemStorage* storage;
int i, ntrees;
std::string s;
clear();
read_params( fs, node );
if( !data )
EXIT;
base_value = (float)cvReadRealByName( fs, node, "base_value", 0.0 );
class_count = cvReadIntByName( fs, node, "class_count", 1 );
weak = new pCvSeq[class_count];
for (int j=0; j<class_count; ++j)
{
s = "trees_";
s += ToString(j);
trees_fnode = cvGetFileNodeByName( fs, node, s.c_str() );
if( !trees_fnode || !CV_NODE_IS_SEQ(trees_fnode->tag) )
CV_ERROR( CV_StsParseError, "<trees_x> tag is missing" );
cvStartReadSeq( trees_fnode->data.seq, &reader );
ntrees = trees_fnode->data.seq->total;
if( ntrees != params.weak_count )
CV_ERROR( CV_StsUnmatchedSizes,
"The number of trees stored does not match <ntrees> tag value" );
CV_CALL( storage = cvCreateMemStorage() );
weak[j] = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvDTree*), storage );
for( i = 0; i < ntrees; i++ )
{
CvDTree* tree = new CvDTree();
CV_CALL(tree->read( fs, (CvFileNode*)reader.ptr, data ));
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );
cvSeqPush( weak[j], &tree );
}
}
__END__;
}
//===========================================================================
// type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
float
CvGBTrees::calc_error( CvMLData* _data, int type, std::vector<float> *resp )
{
float err = 0;
const CvMat* values = _data->get_values();
const CvMat* response = _data->get_responses();
const CvMat* missing = _data->get_missing();
const CvMat* sample_idx = (type == CV_TEST_ERROR) ?
_data->get_test_sample_idx() :
_data->get_train_sample_idx();
//const CvMat* var_types = _data->get_var_types();
int* sidx = sample_idx ? sample_idx->data.i : 0;
int r_step = CV_IS_MAT_CONT(response->type) ?
1 : response->step / CV_ELEM_SIZE(response->type);
//bool is_classifier =
// var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL;
int sample_count = sample_idx ? sample_idx->cols : 0;
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ?
values->rows :
sample_count;
float* pred_resp = 0;
if( resp && (sample_count > 0) )
{
resp->resize( sample_count );
pred_resp = &((*resp)[0]);
}
if ( !problem_type() )
{
for( int i = 0; i < sample_count; i++ )
{
CvMat sample, miss;
int si = sidx ? sidx[i] : i;
cvGetRow( values, &sample, si );
if( missing )
cvGetRow( missing, &miss, si );
float r = (float)predict( &sample, missing ? &miss : 0 );
if( pred_resp )
pred_resp[i] = r;
int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1;
err += d;
}
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX;
}
else
{
for( int i = 0; i < sample_count; i++ )
{
CvMat sample, miss;
int si = sidx ? sidx[i] : i;
cvGetRow( values, &sample, si );
if( missing )
cvGetRow( missing, &miss, si );
float r = (float)predict( &sample, missing ? &miss : 0 );
if( pred_resp )
pred_resp[i] = r;
float d = r - response->data.fl[si*r_step];
err += d*d;
}
err = sample_count ? err / (float)sample_count : -FLT_MAX;
}
return err;
}
2010-11-02 18:58:22 +01:00
CvGBTrees::CvGBTrees( const cv::Mat& trainData, int tflag,
const cv::Mat& responses, const cv::Mat& varIdx,
const cv::Mat& sampleIdx, const cv::Mat& varType,
const cv::Mat& missingDataMask,
CvGBTreesParams params )
{
data = 0;
weak = 0;
default_model_name = "my_boost_tree";
orig_response = sum_response = sum_response_tmp = 0;
weak_eval = subsample_train = subsample_test = 0;
missing = sample_idx = 0;
class_labels = 0;
class_count = 1;
delta = 0.0f;
clear();
train(trainData, tflag, responses, varIdx, sampleIdx, varType, missingDataMask, params, false);
}
bool CvGBTrees::train( const cv::Mat& trainData, int tflag,
const cv::Mat& responses, const cv::Mat& varIdx,
const cv::Mat& sampleIdx, const cv::Mat& varType,
const cv::Mat& missingDataMask,
CvGBTreesParams params,
bool update )
{
CvMat _trainData = trainData, _responses = responses;
CvMat _varIdx = varIdx, _sampleIdx = sampleIdx, _varType = varType;
2010-11-02 18:58:22 +01:00
CvMat _missingDataMask = missingDataMask;
2011-04-30 20:02:56 +02:00
return train( &_trainData, tflag, &_responses, varIdx.empty() ? 0 : &_varIdx,
sampleIdx.empty() ? 0 : &_sampleIdx, varType.empty() ? 0 : &_varType,
missingDataMask.empty() ? 0 : &_missingDataMask, params, update);
2010-11-02 18:58:22 +01:00
}
float CvGBTrees::predict( const cv::Mat& sample, const cv::Mat& missing,
const cv::Range& slice, int k ) const
{
CvMat _sample = sample, _missing = missing;
2011-04-30 20:02:56 +02:00
return predict(&_sample, missing.empty() ? 0 : &_missing, 0,
2010-11-02 18:58:22 +01:00
slice==cv::Range::all() ? CV_WHOLE_SEQ : cvSlice(slice.start, slice.end), k);
}