136 lines
4.7 KiB
Python
136 lines
4.7 KiB
Python
|
'''
|
||
|
Digit recognition adjustment.
|
||
|
Grid search is used to find the best parameters for SVN and KNearest classifiers.
|
||
|
SVM adjustment follows the guidelines given in
|
||
|
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
|
||
|
|
||
|
Threading or cloud computing (with http://www.picloud.com/)) may be used
|
||
|
to speedup the computation.
|
||
|
|
||
|
Usage:
|
||
|
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>]
|
||
|
|
||
|
--model {svm|knearest} - select the classifier (SVM is the default)
|
||
|
--cloud - use PiCloud computing platform (for SVM only)
|
||
|
--env - cloud environment name
|
||
|
|
||
|
'''
|
||
|
# TODO dataset preprocessing in cloud
|
||
|
# TODO cloud env setup tutorial
|
||
|
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
from multiprocessing.pool import ThreadPool
|
||
|
|
||
|
from digits import *
|
||
|
|
||
|
def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None):
|
||
|
n = len(samples)
|
||
|
folds = np.array_split(np.arange(n), kfold)
|
||
|
def f(i):
|
||
|
model = model_class(**params)
|
||
|
test_idx = folds[i]
|
||
|
train_idx = list(folds)
|
||
|
train_idx.pop(i)
|
||
|
train_idx = np.hstack(train_idx)
|
||
|
train_samples, train_labels = samples[train_idx], labels[train_idx]
|
||
|
test_samples, test_labels = samples[test_idx], labels[test_idx]
|
||
|
model.train(train_samples, train_labels)
|
||
|
resp = model.predict(test_samples)
|
||
|
score = (resp != test_labels).mean()
|
||
|
print ".",
|
||
|
return score
|
||
|
if pool is None:
|
||
|
scores = map(f, xrange(kfold))
|
||
|
else:
|
||
|
scores = pool.map(f, xrange(kfold))
|
||
|
return np.mean(scores)
|
||
|
|
||
|
def adjust_KNearest(samples, labels):
|
||
|
print 'adjusting KNearest ...'
|
||
|
best_err, best_k = np.inf, -1
|
||
|
for k in xrange(1, 9):
|
||
|
err = cross_validate(KNearest, dict(k=k), samples, labels)
|
||
|
if err < best_err:
|
||
|
best_err, best_k = err, k
|
||
|
print 'k = %d, error: %.2f %%' % (k, err*100)
|
||
|
best_params = dict(k=best_k)
|
||
|
print 'best params:', best_params
|
||
|
return best_params
|
||
|
|
||
|
def adjust_SVM(samples, labels, usecloud=False, cloud_env=''):
|
||
|
Cs = np.logspace(0, 5, 10, base=2)
|
||
|
gammas = np.logspace(-7, -2, 10, base=2)
|
||
|
scores = np.zeros((len(Cs), len(gammas)))
|
||
|
scores[:] = np.nan
|
||
|
|
||
|
if usecloud:
|
||
|
try:
|
||
|
import cloud
|
||
|
except ImportError:
|
||
|
print 'cloud module is not installed'
|
||
|
usecloud = False
|
||
|
if usecloud:
|
||
|
print 'uploading dataset to cloud...'
|
||
|
np.savez('train.npz', samples=samples, labels=labels)
|
||
|
cloud.files.put('train.npz')
|
||
|
|
||
|
print 'adjusting SVM (may take a long time) ...'
|
||
|
def f(job):
|
||
|
i, j = job
|
||
|
params = dict(C = Cs[i], gamma=gammas[j])
|
||
|
score = cross_validate(SVM, params, samples, labels)
|
||
|
return i, j, score
|
||
|
def fcloud(job):
|
||
|
i, j = job
|
||
|
cloud.files.get('train.npz')
|
||
|
npz = np.load('train.npz')
|
||
|
params = dict(C = Cs[i], gamma=gammas[j])
|
||
|
score = cross_validate(SVM, params, npz['samples'], npz['labels'])
|
||
|
return i, j, score
|
||
|
|
||
|
if usecloud:
|
||
|
jids = cloud.map(fcloud, np.ndindex(*scores.shape), _env=cloud_env, _profile=True)
|
||
|
ires = cloud.iresult(jids)
|
||
|
else:
|
||
|
pool = ThreadPool(processes=cv2.getNumberOfCPUs())
|
||
|
ires = pool.imap_unordered(f, np.ndindex(*scores.shape))
|
||
|
|
||
|
for count, (i, j, score) in enumerate(ires):
|
||
|
scores[i, j] = score
|
||
|
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)
|
||
|
print scores
|
||
|
|
||
|
i, j = np.unravel_index(scores.argmin(), scores.shape)
|
||
|
best_params = dict(C = Cs[i], gamma=gammas[j])
|
||
|
print 'best params:', best_params
|
||
|
print 'best error: %.2f %%' % (scores.min()*100)
|
||
|
return best_params
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
import getopt
|
||
|
import sys
|
||
|
|
||
|
print __doc__
|
||
|
|
||
|
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env='])
|
||
|
args = dict(args)
|
||
|
args.setdefault('--model', 'svm')
|
||
|
args.setdefault('--env', '')
|
||
|
if args['--model'] not in ['svm', 'knearest']:
|
||
|
print 'unknown model "%s"' % args['--model']
|
||
|
sys.exit(1)
|
||
|
|
||
|
digits, labels = load_digits('digits.png')
|
||
|
shuffle = np.random.permutation(len(digits))
|
||
|
digits, labels = digits[shuffle], labels[shuffle]
|
||
|
digits2 = map(deskew, digits)
|
||
|
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
|
||
|
|
||
|
t = clock()
|
||
|
if args['--model'] == 'knearest':
|
||
|
adjust_KNearest(samples, labels)
|
||
|
else:
|
||
|
adjust_SVM(samples, labels, usecloud='--cloud' in args, cloud_env = args['--env'])
|
||
|
print 'work time: %f s' % (clock() - t)
|
||
|
|