94 lines
2.8 KiB
C
94 lines
2.8 KiB
C
|
#ifdef _CH_
|
||
|
#pragma package <opencv>
|
||
|
#endif
|
||
|
|
||
|
#define CV_NO_BACKWARD_COMPATIBILITY
|
||
|
|
||
|
#ifndef _EiC
|
||
|
#include "cv.h"
|
||
|
#include "highgui.h"
|
||
|
#include <stdio.h>
|
||
|
#endif
|
||
|
|
||
|
int main( int argc, char** argv )
|
||
|
{
|
||
|
#define MAX_CLUSTERS 5
|
||
|
CvScalar color_tab[MAX_CLUSTERS];
|
||
|
IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 );
|
||
|
CvRNG rng = cvRNG(-1);
|
||
|
CvPoint ipt;
|
||
|
|
||
|
color_tab[0] = CV_RGB(255,0,0);
|
||
|
color_tab[1] = CV_RGB(0,255,0);
|
||
|
color_tab[2] = CV_RGB(100,100,255);
|
||
|
color_tab[3] = CV_RGB(255,0,255);
|
||
|
color_tab[4] = CV_RGB(255,255,0);
|
||
|
|
||
|
cvNamedWindow( "clusters", 1 );
|
||
|
|
||
|
for(;;)
|
||
|
{
|
||
|
char key;
|
||
|
int k, cluster_count = cvRandInt(&rng)%MAX_CLUSTERS + 1;
|
||
|
int i, sample_count = cvRandInt(&rng)%1000 + 1;
|
||
|
CvMat* points = cvCreateMat( sample_count, 1, CV_32FC2 );
|
||
|
CvMat* clusters = cvCreateMat( sample_count, 1, CV_32SC1 );
|
||
|
cluster_count = MIN(cluster_count, sample_count);
|
||
|
|
||
|
/* generate random sample from multigaussian distribution */
|
||
|
for( k = 0; k < cluster_count; k++ )
|
||
|
{
|
||
|
CvPoint center;
|
||
|
CvMat point_chunk;
|
||
|
center.x = cvRandInt(&rng)%img->width;
|
||
|
center.y = cvRandInt(&rng)%img->height;
|
||
|
cvGetRows( points, &point_chunk, k*sample_count/cluster_count,
|
||
|
k == cluster_count - 1 ? sample_count :
|
||
|
(k+1)*sample_count/cluster_count, 1 );
|
||
|
|
||
|
cvRandArr( &rng, &point_chunk, CV_RAND_NORMAL,
|
||
|
cvScalar(center.x,center.y,0,0),
|
||
|
cvScalar(img->width*0.1,img->height*0.1,0,0));
|
||
|
}
|
||
|
|
||
|
/* shuffle samples */
|
||
|
for( i = 0; i < sample_count/2; i++ )
|
||
|
{
|
||
|
CvPoint2D32f* pt1 = (CvPoint2D32f*)points->data.fl + cvRandInt(&rng)%sample_count;
|
||
|
CvPoint2D32f* pt2 = (CvPoint2D32f*)points->data.fl + cvRandInt(&rng)%sample_count;
|
||
|
CvPoint2D32f temp;
|
||
|
CV_SWAP( *pt1, *pt2, temp );
|
||
|
}
|
||
|
|
||
|
printf( "iterations=%d\n", cvKMeans2( points, cluster_count, clusters,
|
||
|
cvTermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0 ),
|
||
|
5, 0, 0, 0, 0 ));
|
||
|
|
||
|
cvZero( img );
|
||
|
|
||
|
for( i = 0; i < sample_count; i++ )
|
||
|
{
|
||
|
int cluster_idx = clusters->data.i[i];
|
||
|
ipt.x = (int)points->data.fl[i*2];
|
||
|
ipt.y = (int)points->data.fl[i*2+1];
|
||
|
cvCircle( img, ipt, 2, color_tab[cluster_idx], CV_FILLED, CV_AA, 0 );
|
||
|
}
|
||
|
|
||
|
cvReleaseMat( &points );
|
||
|
cvReleaseMat( &clusters );
|
||
|
|
||
|
cvShowImage( "clusters", img );
|
||
|
|
||
|
key = (char) cvWaitKey(0);
|
||
|
if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
cvDestroyWindow( "clusters" );
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef _EiC
|
||
|
main(1,"kmeans.c");
|
||
|
#endif
|