140 lines
4.3 KiB
C
140 lines
4.3 KiB
C
|
#define CV_NO_BACKWARD_COMPATIBILITY
|
||
|
|
||
|
#include <cxcore.h>
|
||
|
#include <cv.h>
|
||
|
#include <highgui.h>
|
||
|
|
||
|
// Rearrange the quadrants of Fourier image so that the origin is at
|
||
|
// the image center
|
||
|
// src & dst arrays of equal size & type
|
||
|
void cvShiftDFT(CvArr * src_arr, CvArr * dst_arr )
|
||
|
{
|
||
|
CvMat * tmp=0;
|
||
|
CvMat q1stub, q2stub;
|
||
|
CvMat q3stub, q4stub;
|
||
|
CvMat d1stub, d2stub;
|
||
|
CvMat d3stub, d4stub;
|
||
|
CvMat * q1, * q2, * q3, * q4;
|
||
|
CvMat * d1, * d2, * d3, * d4;
|
||
|
|
||
|
CvSize size = cvGetSize(src_arr);
|
||
|
CvSize dst_size = cvGetSize(dst_arr);
|
||
|
int cx, cy;
|
||
|
|
||
|
if(dst_size.width != size.width ||
|
||
|
dst_size.height != size.height){
|
||
|
cvError( CV_StsUnmatchedSizes, "cvShiftDFT", "Source and Destination arrays must have equal sizes", __FILE__, __LINE__ );
|
||
|
}
|
||
|
|
||
|
if(src_arr==dst_arr){
|
||
|
tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr));
|
||
|
}
|
||
|
|
||
|
cx = size.width/2;
|
||
|
cy = size.height/2; // image center
|
||
|
|
||
|
q1 = cvGetSubRect( src_arr, &q1stub, cvRect(0,0,cx, cy) );
|
||
|
q2 = cvGetSubRect( src_arr, &q2stub, cvRect(cx,0,cx,cy) );
|
||
|
q3 = cvGetSubRect( src_arr, &q3stub, cvRect(cx,cy,cx,cy) );
|
||
|
q4 = cvGetSubRect( src_arr, &q4stub, cvRect(0,cy,cx,cy) );
|
||
|
d1 = cvGetSubRect( src_arr, &d1stub, cvRect(0,0,cx,cy) );
|
||
|
d2 = cvGetSubRect( src_arr, &d2stub, cvRect(cx,0,cx,cy) );
|
||
|
d3 = cvGetSubRect( src_arr, &d3stub, cvRect(cx,cy,cx,cy) );
|
||
|
d4 = cvGetSubRect( src_arr, &d4stub, cvRect(0,cy,cx,cy) );
|
||
|
|
||
|
if(src_arr!=dst_arr){
|
||
|
if( !CV_ARE_TYPES_EQ( q1, d1 )){
|
||
|
cvError( CV_StsUnmatchedFormats, "cvShiftDFT", "Source and Destination arrays must have the same format", __FILE__, __LINE__ );
|
||
|
}
|
||
|
cvCopy(q3, d1, 0);
|
||
|
cvCopy(q4, d2, 0);
|
||
|
cvCopy(q1, d3, 0);
|
||
|
cvCopy(q2, d4, 0);
|
||
|
}
|
||
|
else{
|
||
|
cvCopy(q3, tmp, 0);
|
||
|
cvCopy(q1, q3, 0);
|
||
|
cvCopy(tmp, q1, 0);
|
||
|
cvCopy(q4, tmp, 0);
|
||
|
cvCopy(q2, q4, 0);
|
||
|
cvCopy(tmp, q2, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, char ** argv)
|
||
|
{
|
||
|
const char* filename = argc >=2 ? argv[1] : "lena.jpg";
|
||
|
IplImage * im;
|
||
|
|
||
|
IplImage * realInput;
|
||
|
IplImage * imaginaryInput;
|
||
|
IplImage * complexInput;
|
||
|
int dft_M, dft_N;
|
||
|
CvMat* dft_A, tmp;
|
||
|
IplImage * image_Re;
|
||
|
IplImage * image_Im;
|
||
|
double m, M;
|
||
|
|
||
|
im = cvLoadImage( filename, CV_LOAD_IMAGE_GRAYSCALE );
|
||
|
if( !im )
|
||
|
return -1;
|
||
|
|
||
|
realInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
|
||
|
imaginaryInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
|
||
|
complexInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 2);
|
||
|
|
||
|
cvScale(im, realInput, 1.0, 0.0);
|
||
|
cvZero(imaginaryInput);
|
||
|
cvMerge(realInput, imaginaryInput, NULL, NULL, complexInput);
|
||
|
|
||
|
dft_M = cvGetOptimalDFTSize( im->height - 1 );
|
||
|
dft_N = cvGetOptimalDFTSize( im->width - 1 );
|
||
|
|
||
|
dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 );
|
||
|
image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
|
||
|
image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
|
||
|
|
||
|
// copy A to dft_A and pad dft_A with zeros
|
||
|
cvGetSubRect( dft_A, &tmp, cvRect(0,0, im->width, im->height));
|
||
|
cvCopy( complexInput, &tmp, NULL );
|
||
|
if( dft_A->cols > im->width )
|
||
|
{
|
||
|
cvGetSubRect( dft_A, &tmp, cvRect(im->width,0, dft_A->cols - im->width, im->height));
|
||
|
cvZero( &tmp );
|
||
|
}
|
||
|
|
||
|
// no need to pad bottom part of dft_A with zeros because of
|
||
|
// use nonzero_rows parameter in cvDFT() call below
|
||
|
|
||
|
cvDFT( dft_A, dft_A, CV_DXT_FORWARD, complexInput->height );
|
||
|
|
||
|
cvNamedWindow("win", 0);
|
||
|
cvNamedWindow("magnitude", 0);
|
||
|
cvShowImage("win", im);
|
||
|
|
||
|
// Split Fourier in real and imaginary parts
|
||
|
cvSplit( dft_A, image_Re, image_Im, 0, 0 );
|
||
|
|
||
|
// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
|
||
|
cvPow( image_Re, image_Re, 2.0);
|
||
|
cvPow( image_Im, image_Im, 2.0);
|
||
|
cvAdd( image_Re, image_Im, image_Re, NULL);
|
||
|
cvPow( image_Re, image_Re, 0.5 );
|
||
|
|
||
|
// Compute log(1 + Mag)
|
||
|
cvAddS( image_Re, cvScalarAll(1.0), image_Re, NULL ); // 1 + Mag
|
||
|
cvLog( image_Re, image_Re ); // log(1 + Mag)
|
||
|
|
||
|
|
||
|
// Rearrange the quadrants of Fourier image so that the origin is at
|
||
|
// the image center
|
||
|
cvShiftDFT( image_Re, image_Re );
|
||
|
|
||
|
cvMinMaxLoc(image_Re, &m, &M, NULL, NULL, NULL);
|
||
|
cvScale(image_Re, image_Re, 1.0/(M-m), 1.0*(-m)/(M-m));
|
||
|
cvShowImage("magnitude", image_Re);
|
||
|
|
||
|
cvWaitKey(-1);
|
||
|
return 0;
|
||
|
}
|