2012-03-30 14:19:25 +02:00
Motion Analysis
===============
.. highlight :: cpp
CalcOpticalFlowBM
-----------------
Calculates the optical flow for two images by using the block matching method.
2012-05-28 09:36:14 +02:00
.. ocv:cfunction :: void cvCalcOpticalFlowBM( const CvArr* prev, const CvArr* curr, CvSize block_size, CvSize shift_size, CvSize max_range, int use_previous, CvArr* velx, CvArr* vely )
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
.. ocv:pyoldfunction :: cv.CalcOpticalFlowBM(prev, curr, blockSize, shiftSize, max_range, usePrevious, velx, vely)-> None
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param prev: First image, 8-bit, single-channel
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param curr: Second image, 8-bit, single-channel
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param blockSize: Size of basic blocks that are compared
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param shiftSize: Block coordinate increments
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param maxRange: Size of the scanned neighborhood in pixels around the block
2012-03-30 14:19:25 +02:00
:param usePrevious: Flag that specifies whether to use the input velocity as initial approximations or not.
:param velx: Horizontal component of the optical flow of
.. math ::
2012-05-28 09:36:14 +02:00
\left \lfloor \frac{\texttt{prev->width} - \texttt{blockSize.width}}{\texttt{shiftSize.width}} \right \rfloor \times \left \lfloor \frac{\texttt{prev->height} - \texttt{blockSize.height}}{\texttt{shiftSize.height}} \right \rfloor
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
size, 32-bit floating-point, single-channel
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param vely: Vertical component of the optical flow of the same size ``velx`` , 32-bit floating-point, single-channel
2012-03-30 14:19:25 +02:00
The function calculates the optical flow for overlapped blocks `` blockSize.width x blockSize.height `` pixels each, thus the velocity fields are smaller than the original images. For every block in `` prev ``
the functions tries to find a similar block in `` curr `` in some neighborhood of the original block or shifted by `` (velx(x0,y0), vely(x0,y0)) `` block as has been calculated by previous function call (if `` usePrevious=1 `` )
CalcOpticalFlowHS
-----------------
Calculates the optical flow for two images using Horn-Schunck algorithm.
2012-05-28 09:36:14 +02:00
.. ocv:cfunction :: void cvCalcOpticalFlowHS(const CvArr* prev, const CvArr* curr, int use_previous, CvArr* velx, CvArr* vely, double lambda, CvTermCriteria criteria)
2012-03-30 14:19:25 +02:00
.. ocv:pyoldfunction :: cv.CalcOpticalFlowHS(prev, curr, usePrevious, velx, vely, lambda, criteria)-> None
2012-05-28 09:36:14 +02:00
:param prev: First image, 8-bit, single-channel
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param curr: Second image, 8-bit, single-channel
2012-03-30 14:19:25 +02:00
:param usePrevious: Flag that specifies whether to use the input velocity as initial approximations or not.
2012-05-28 09:36:14 +02:00
:param velx: Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param vely: Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
2012-03-30 14:19:25 +02:00
:param lambda: Smoothness weight. The larger it is, the smoother optical flow map you get.
2012-05-28 09:36:14 +02:00
:param criteria: Criteria of termination of velocity computing
2012-03-30 14:19:25 +02:00
The function computes the flow for every pixel of the first input image using the Horn and Schunck algorithm [Horn81]_ . The function is obsolete. To track sparse features, use :ocv:func: `calcOpticalFlowPyrLK` . To track all the pixels, use :ocv:func: `calcOpticalFlowFarneback` .
CalcOpticalFlowLK
-----------------
Calculates the optical flow for two images using Lucas-Kanade algorithm.
2012-05-28 09:36:14 +02:00
.. ocv:cfunction :: void cvCalcOpticalFlowLK( const CvArr* prev, const CvArr* curr, CvSize win_size, CvArr* velx, CvArr* vely )
2012-03-30 14:19:25 +02:00
.. ocv:pyoldfunction :: cv.CalcOpticalFlowLK(prev, curr, winSize, velx, vely)-> None
2012-05-28 09:36:14 +02:00
:param prev: First image, 8-bit, single-channel
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param curr: Second image, 8-bit, single-channel
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param winSize: Size of the averaging window used for grouping pixels
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param velx: Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
2012-03-30 14:19:25 +02:00
2012-05-28 09:36:14 +02:00
:param vely: Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
2012-03-30 14:19:25 +02:00
The function computes the flow for every pixel of the first input image using the Lucas and Kanade algorithm [Lucas81]_ . The function is obsolete. To track sparse features, use :ocv:func: `calcOpticalFlowPyrLK` . To track all the pixels, use :ocv:func: `calcOpticalFlowFarneback` .