154 lines
5.7 KiB
Python
154 lines
5.7 KiB
Python
|
#!/usr/bin/python
|
||
|
#
|
||
|
# The full "Square Detector" program.
|
||
|
# It loads several images subsequentally and tries to find squares in
|
||
|
# each image
|
||
|
#
|
||
|
|
||
|
import urllib2
|
||
|
from math import sqrt
|
||
|
import cv
|
||
|
|
||
|
thresh = 50
|
||
|
img = None
|
||
|
img0 = None
|
||
|
storage = None
|
||
|
wndname = "Square Detection Demo"
|
||
|
|
||
|
def angle(pt1, pt2, pt0):
|
||
|
dx1 = pt1.x - pt0.x
|
||
|
dy1 = pt1.y - pt0.y
|
||
|
dx2 = pt2.x - pt0.x
|
||
|
dy2 = pt2.y - pt0.y
|
||
|
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10)
|
||
|
|
||
|
def findSquares4(img, storage):
|
||
|
N = 11
|
||
|
sz = (img.width & -2, img.height & -2)
|
||
|
timg = cv.CloneImage(img); # make a copy of input image
|
||
|
gray = cv.CreateImage(sz, 8, 1)
|
||
|
pyr = cv.CreateImage((sz.width/2, sz.height/2), 8, 3)
|
||
|
# create empty sequence that will contain points -
|
||
|
# 4 points per square (the square's vertices)
|
||
|
squares = cv.CreateSeq(0, sizeof_CvSeq, sizeof_CvPoint, storage)
|
||
|
squares = CvSeq_CvPoint.cast(squares)
|
||
|
|
||
|
# select the maximum ROI in the image
|
||
|
# with the width and height divisible by 2
|
||
|
subimage = cv.GetSubRect(timg, cv.Rect(0, 0, sz.width, sz.height))
|
||
|
|
||
|
# down-scale and upscale the image to filter out the noise
|
||
|
cv.PyrDown(subimage, pyr, 7)
|
||
|
cv.PyrUp(pyr, subimage, 7)
|
||
|
tgray = cv.CreateImage(sz, 8, 1)
|
||
|
# find squares in every color plane of the image
|
||
|
for c in range(3):
|
||
|
# extract the c-th color plane
|
||
|
channels = [None, None, None]
|
||
|
channels[c] = tgray
|
||
|
cv.Split(subimage, channels[0], channels[1], channels[2], None)
|
||
|
for l in range(N):
|
||
|
# hack: use Canny instead of zero threshold level.
|
||
|
# Canny helps to catch squares with gradient shading
|
||
|
if(l == 0):
|
||
|
# apply Canny. Take the upper threshold from slider
|
||
|
# and set the lower to 0 (which forces edges merging)
|
||
|
cv.Canny(tgray, gray, 0, thresh, 5)
|
||
|
# dilate canny output to remove potential
|
||
|
# holes between edge segments
|
||
|
cv.Dilate(gray, gray, None, 1)
|
||
|
else:
|
||
|
# apply threshold if l!=0:
|
||
|
# tgray(x, y) = gray(x, y) < (l+1)*255/N ? 255 : 0
|
||
|
cv.Threshold(tgray, gray, (l+1)*255/N, 255, cv.CV_THRESH_BINARY)
|
||
|
|
||
|
# find contours and store them all as a list
|
||
|
count, contours = cv.FindContours(gray, storage, sizeof_CvContour,
|
||
|
cv.CV_RETR_LIST, cv. CV_CHAIN_APPROX_SIMPLE, (0, 0))
|
||
|
|
||
|
if not contours:
|
||
|
continue
|
||
|
|
||
|
# test each contour
|
||
|
for contour in contours.hrange():
|
||
|
# approximate contour with accuracy proportional
|
||
|
# to the contour perimeter
|
||
|
result = cv.ApproxPoly(contour, sizeof_CvContour, storage,
|
||
|
cv.CV_POLY_APPROX_DP, cv.ContourPerimeter(contours)*0.02, 0)
|
||
|
# square contours should have 4 vertices after approximation
|
||
|
# relatively large area (to filter out noisy contours)
|
||
|
# and be convex.
|
||
|
# Note: absolute value of an area is used because
|
||
|
# area may be positive or negative - in accordance with the
|
||
|
# contour orientation
|
||
|
if(result.total == 4 and
|
||
|
abs(cv.ContourArea(result)) > 1000 and
|
||
|
cv.CheckContourConvexity(result)):
|
||
|
s = 0
|
||
|
for i in range(5):
|
||
|
# find minimum angle between joint
|
||
|
# edges (maximum of cosine)
|
||
|
if(i >= 2):
|
||
|
t = abs(angle(result[i], result[i-2], result[i-1]))
|
||
|
if s<t:
|
||
|
s=t
|
||
|
# if cosines of all angles are small
|
||
|
# (all angles are ~90 degree) then write quandrange
|
||
|
# vertices to resultant sequence
|
||
|
if(s < 0.3):
|
||
|
for i in range(4):
|
||
|
squares.append(result[i])
|
||
|
|
||
|
return squares
|
||
|
|
||
|
# the function draws all the squares in the image
|
||
|
def drawSquares(img, squares):
|
||
|
cpy = cv.CloneImage(img)
|
||
|
# read 4 sequence elements at a time (all vertices of a square)
|
||
|
i=0
|
||
|
while i<squares.total:
|
||
|
pt = []
|
||
|
# read 4 vertices
|
||
|
pt.append(squares[i])
|
||
|
pt.append(squares[i+1])
|
||
|
pt.append(squares[i+2])
|
||
|
pt.append(squares[i+3])
|
||
|
|
||
|
# draw the square as a closed polyline
|
||
|
cv.PolyLine(cpy, [pt], 1, cv.CV_RGB(0, 255, 0), 3, cv. CV_AA, 0)
|
||
|
i+=4
|
||
|
|
||
|
# show the resultant image
|
||
|
cv.ShowImage(wndname, cpy)
|
||
|
|
||
|
def on_trackbar(a):
|
||
|
if(img):
|
||
|
drawSquares(img, findSquares4(img, storage))
|
||
|
|
||
|
names = ["../c/pic1.png", "../c/pic2.png", "../c/pic3.png",
|
||
|
"../c/pic4.png", "../c/pic5.png", "../c/pic6.png" ]
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
# create memory storage that will contain all the dynamic data
|
||
|
storage = cv.CreateMemStorage(0)
|
||
|
for name in names:
|
||
|
img0 = cv.LoadImage(name, 1)
|
||
|
if not img0:
|
||
|
print "Couldn't load %s" % name
|
||
|
continue
|
||
|
img = cv.CloneImage(img0)
|
||
|
# create window and a trackbar (slider) with parent "image" and set callback
|
||
|
# (the slider regulates upper threshold, passed to Canny edge detector)
|
||
|
cv.NamedWindow(wndname, 1)
|
||
|
cv.CreateTrackbar("canny thresh", wndname, thresh, 1000, on_trackbar)
|
||
|
# force the image processing
|
||
|
on_trackbar(0)
|
||
|
# wait for key.
|
||
|
# Also the function cv.WaitKey takes care of event processing
|
||
|
c = cv.WaitKey(0) % 0x100
|
||
|
# clear memory storage - reset free space position
|
||
|
cv.ClearMemStorage(storage)
|
||
|
if(c == '\x1b'):
|
||
|
break
|
||
|
cv.DestroyWindow(wndname)
|