opencv/samples/c/find_obj_calonder.cpp

159 lines
5.2 KiB
C++
Raw Normal View History

#include <highgui.h>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <iostream>
#include <fstream>
using namespace std;
using namespace cv;
2010-07-27 14:26:52 +02:00
void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng )
{
H.create(3, 3, CV_32FC1);
H.at<float>(0,0) = rng.uniform( 0.8f, 1.2f);
H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f);
H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols;
H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f);
H.at<float>(1,1) = rng.uniform( 0.8f, 1.2f);
H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows;
H.at<float>(2,0) = rng.uniform( -1e-4f, 1e-4f);
H.at<float>(2,1) = rng.uniform( -1e-4f, 1e-4f);
H.at<float>(2,2) = rng.uniform( 0.8f, 1.2f);
warpPerspective( src, dst, H, src.size() );
}
int main( int argc, char **argv )
{
2010-07-27 14:26:52 +02:00
#if 0
if( argc != 4 && argc != 3 )
{
cout << "Format:" << endl <<
" classifier(xml to write) test_image file_with_train_images_filenames(txt)" <<
" or" << endl <<
" classifier(xml to read) test_image" << endl;
return -1;
}
CalonderClassifier classifier;
if( argc == 4 ) // Train
{
// Read train images and test image
ifstream fst( argv[3], ifstream::in );
vector<Mat> trainImgs;
while( !fst.eof() )
{
string str;
getline( fst, str );
if (str.empty()) break;
Mat img = imread( str, CV_LOAD_IMAGE_GRAYSCALE );
if( !img.empty() )
trainImgs.push_back( img );
}
if( trainImgs.empty() )
{
cout << "All train images can not be read." << endl;
return -1;
}
cout << trainImgs.size() << " train images were read." << endl;
// Extract keypoints from train images
SurfFeatureDetector detector;
vector<vector<Point2f> > trainPoints( trainImgs.size() );
for( size_t i = 0; i < trainImgs.size(); i++ )
{
vector<KeyPoint> kps;
detector.detect( trainImgs[i], kps );
KeyPoint::convert( kps, trainPoints[i] );
}
// Train Calonder classifier on extracted points
classifier.setVerbose( true);
classifier.train( trainPoints, trainImgs );
// Write Calonder classifier
FileStorage fs( argv[1], FileStorage::WRITE );
2010-07-27 14:26:52 +02:00
if( fs.isOpened() ) classifier.write( fs );
}
else
{
// Read Calonder classifier
FileStorage fs( argv[1], FileStorage::READ );
2010-07-27 14:26:52 +02:00
if( fs.isOpened() ) classifier.read( fs.root() );
}
if( classifier.empty() )
{
cout << "Calonder classifier is empty" << endl;
return -1;
}
// Test Calonder classifier on test image and warped one
Mat testImg1 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ), testImg2, H12;
if( testImg1.empty() )
{
cout << "Test image can not be read." << endl;
return -1;
}
warpPerspectiveRand( testImg1, testImg2, H12, theRNG() );
// Exstract keypoints from test images
SurfFeatureDetector detector;
vector<KeyPoint> testKeypoints1; detector.detect( testImg1, testKeypoints1 );
vector<KeyPoint> testKeypoints2; detector.detect( testImg2, testKeypoints2 );
vector<Point2f> testPoints1; KeyPoint::convert( testKeypoints1, testPoints1 );
vector<Point2f> testPoints2; KeyPoint::convert( testKeypoints2, testPoints2 );
// Calculate Calonder descriptors
int signatureSize = classifier.getSignatureSize();
vector<float> r1(testPoints1.size()*signatureSize), r2(testPoints2.size()*signatureSize);
vector<float>::iterator rit = r1.begin();
for( size_t i = 0; i < testPoints1.size(); i++ )
{
vector<float> s;
classifier( testImg1, testPoints1[i], s );
copy( s.begin(), s.end(), rit );
rit += s.size();
}
rit = r2.begin();
for( size_t i = 0; i < testPoints2.size(); i++ )
{
vector<float> s;
classifier( testImg2, testPoints2[i], s );
copy( s.begin(), s.end(), rit );
rit += s.size();
}
Mat descriptors1(testPoints1.size(), classifier.getSignatureSize(), CV_32FC1, &r1[0] ),
descriptors2(testPoints2.size(), classifier.getSignatureSize(), CV_32FC1, &r2[0] );
// Match descriptors
BruteForceMatcher<L1<float> > matcher;
matcher.add( descriptors2 );
vector<int> matches;
matcher.match( descriptors1, matches );
// Draw results
// Prepare inlier mask
vector<char> matchesMask( matches.size(), 0 );
Mat points1t; perspectiveTransform(Mat(testPoints1), points1t, H12);
vector<int>::const_iterator mit = matches.begin();
for( size_t mi = 0; mi < matches.size(); mi++ )
{
if( norm(testPoints2[matches[mi]] - points1t.at<Point2f>(mi,0)) < 4 ) // inlier
matchesMask[mi] = 1;
}
// Draw
Mat drawImg;
drawMatches( testImg1, testKeypoints1, testImg2, testKeypoints2, matches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask );
string winName = "Matches";
namedWindow( winName, WINDOW_AUTOSIZE );
imshow( winName, drawImg );
waitKey();
2010-07-27 14:26:52 +02:00
#endif
return 0;
}