opencv/samples/python2/feature_homography.py

169 lines
5.8 KiB
Python
Raw Normal View History

'''
Feature homography
==================
Example of using features2d framework for interactive video homography matching.
2012-07-06 17:42:42 +02:00
ORB features and FLANN matcher are used.
Inspired by http://www.youtube.com/watch?v=-ZNYoL8rzPY
Usage
-----
feature_homography.py [<video source>]
2012-07-06 17:42:42 +02:00
Select a textured planar object to track by drawing a box with a mouse.
2012-07-06 17:42:42 +02:00
'''
import numpy as np
import cv2
import video
2012-07-06 17:42:42 +02:00
import common
from collections import namedtuple
from common import getsize
2012-07-06 17:42:42 +02:00
FLANN_INDEX_KDTREE = 1
FLANN_INDEX_LSH = 6
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
2012-07-06 17:42:42 +02:00
MIN_MATCH_COUNT = 10
ar_verts = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0],
[0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1],
[0.5, 0.5, 2]])
ar_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
(4, 5), (5, 6), (6, 7), (7, 4),
(0, 4), (1, 5), (2, 6), (3, 7),
(4, 8), (5, 8), (6, 8), (7, 8)]
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
for kp in keypoints:
x, y = kp.pt
cv2.circle(vis, (int(x), int(y)), 2, color)
2012-07-06 17:42:42 +02:00
class App:
def __init__(self, src):
self.cap = video.create_capture(src)
self.frame = None
self.paused = False
2012-07-06 17:42:42 +02:00
self.ref_frame = None
2012-07-06 17:42:42 +02:00
self.detector = cv2.ORB( nfeatures = 1000 )
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
2012-07-06 17:42:42 +02:00
cv2.namedWindow('plane')
self.rect_sel = common.RectSelector('plane', self.on_rect)
2012-07-06 17:42:42 +02:00
def match_frames(self):
if len(self.frame_desc) < MIN_MATCH_COUNT or len(self.frame_desc) < MIN_MATCH_COUNT:
return
raw_matches = self.matcher.knnMatch(self.frame_desc, k = 2)
2012-07-06 17:42:42 +02:00
p0, p1 = [], []
for m in raw_matches:
if len(m) == 2 and m[0].distance < m[1].distance * 0.75:
m = m[0]
p0.append( self.ref_points[m.trainIdx].pt ) # queryIdx
p1.append( self.frame_points[m.queryIdx].pt )
2012-07-06 17:42:42 +02:00
p0, p1 = np.float32((p0, p1))
if len(p0) < MIN_MATCH_COUNT:
return
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 4.0)
status = status.ravel() != 0
if status.sum() < MIN_MATCH_COUNT:
return
p0, p1 = p0[status], p1[status]
return p0, p1, H
def on_frame(self, vis):
match = self.match_frames()
if match is None:
return
w, h = getsize(self.frame)
p0, p1, H = match
for (x0, y0), (x1, y1) in zip(np.int32(p0), np.int32(p1)):
cv2.line(vis, (x0+w, y0), (x1, y1), (0, 255, 0))
x0, y0, x1, y1 = self.ref_rect
corners0 = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
img_corners = cv2.perspectiveTransform(corners0.reshape(1, -1, 2), H)
cv2.polylines(vis, [np.int32(img_corners)], True, (255, 255, 255), 2)
corners3d = np.hstack([corners0, np.zeros((4, 1), np.float32)])
fx = 0.9
K = np.float64([[fx*w, 0, 0.5*(w-1)],
[0, fx*w, 0.5*(h-1)],
[0.0,0.0, 1.0]])
dist_coef = np.zeros(4)
ret, rvec, tvec = cv2.solvePnP(corners3d, img_corners, K, dist_coef)
verts = ar_verts * [(x1-x0), (y1-y0), -(x1-x0)*0.3] + (x0, y0, 0)
verts = cv2.projectPoints(verts, rvec, tvec, K, dist_coef)[0].reshape(-1, 2)
for i, j in ar_edges:
(x0, y0), (x1, y1) = verts[i], verts[j]
cv2.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (255, 255, 0), 2)
2012-07-06 17:42:42 +02:00
def on_rect(self, rect):
x0, y0, x1, y1 = rect
self.ref_frame = self.frame.copy()
self.ref_rect = rect
points, descs = [], []
for kp, desc in zip(self.frame_points, self.frame_desc):
x, y = kp.pt
if x0 <= x <= x1 and y0 <= y <= y1:
points.append(kp)
descs.append(desc)
self.ref_points, self.ref_descs = points, np.uint8(descs)
self.matcher.clear()
self.matcher.add([self.ref_descs])
2012-07-06 17:42:42 +02:00
def run(self):
while True:
playing = not self.paused and not self.rect_sel.dragging
if playing or self.frame is None:
ret, frame = self.cap.read()
if not ret:
break
self.frame = np.fliplr(frame).copy()
self.frame_points, self.frame_desc = self.detector.detectAndCompute(self.frame, None)
if self.frame_desc is None: # detectAndCompute returns descs=None if not keypoints found
self.frame_desc = []
w, h = getsize(self.frame)
vis = np.zeros((h, w*2, 3), np.uint8)
vis[:h,:w] = self.frame
if self.ref_frame is not None:
vis[:h,w:] = self.ref_frame
x0, y0, x1, y1 = self.ref_rect
cv2.rectangle(vis, (x0+w, y0), (x1+w, y1), (0, 255, 0), 2)
draw_keypoints(vis[:,w:], self.ref_points)
draw_keypoints(vis, self.frame_points)
if playing and self.ref_frame is not None:
self.on_frame(vis)
self.rect_sel.draw(vis)
cv2.imshow('plane', vis)
2012-07-06 17:42:42 +02:00
ch = cv2.waitKey(1)
if ch == ord(' '):
self.paused = not self.paused
2012-07-06 17:42:42 +02:00
if ch == 27:
break
if __name__ == '__main__':
print __doc__
import sys
try: video_src = sys.argv[1]
except: video_src = 0
2012-07-06 17:42:42 +02:00
App(video_src).run()