314 lines
9.8 KiB
C++
314 lines
9.8 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
/*
|
||
|
This is a modification of the variational stereo correspondence algorithm, described in:
|
||
|
S. Kosov, T. Thormaehlen, H.-P. Seidel "Accurate Real-Time Disparity Estimation with Variational Methods"
|
||
|
Proceedings of the 5th International Symposium on Visual Computing, Vegas, USA
|
||
|
|
||
|
This code is written by Sergey G. Kosov for "Visir PX" application as part of Project X (www.project-10.de)
|
||
|
*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include <limits.h>
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
StereoVar::StereoVar() : levels(3), pyrScale(0.5), nIt(3), minDisp(0), maxDisp(16), poly_n(5), poly_sigma(1.2), fi(1000.0f), lambda(0.0f), penalization(PENALIZATION_TICHONOV), cycle(CYCLE_V), flags(USE_SMART_ID)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
StereoVar::StereoVar(int _levels, double _pyrScale, int _nIt, int _minDisp, int _maxDisp, int _poly_n, double _poly_sigma, float _fi, float _lambda, int _penalization, int _cycle, int _flags) : levels(_levels), pyrScale(_pyrScale), nIt(_nIt), minDisp(_minDisp), maxDisp(_maxDisp), poly_n(_poly_n), poly_sigma(_poly_sigma), fi(_fi), lambda(_lambda), penalization(_penalization), cycle(_cycle), flags(_flags)
|
||
|
{ // No Parameters check, since they are all public
|
||
|
}
|
||
|
|
||
|
StereoVar::~StereoVar()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static Mat diffX(Mat &img)
|
||
|
{
|
||
|
// TODO try pointers or assm
|
||
|
register int x, y;
|
||
|
Mat dst(img.size(), img.type());
|
||
|
dst.setTo(0);
|
||
|
for (x = 0; x < img.cols - 1; x++)
|
||
|
for (y = 0; y < img.rows; y++)
|
||
|
dst.at<float>(y, x) = img.at<float>(y, x + 1) - img.at<float>(y ,x);
|
||
|
return dst;
|
||
|
}
|
||
|
|
||
|
static Mat Gradient(Mat &img)
|
||
|
{
|
||
|
Mat sobel, sobelX, sobelY;
|
||
|
img.copyTo(sobelX);
|
||
|
img.copyTo(sobelY);
|
||
|
Sobel(img, sobelX, sobelX.type(), 1, 0, 1);
|
||
|
Sobel(img, sobelY, sobelY.type(), 0, 1, 1);
|
||
|
sobelX = abs(sobelX);
|
||
|
sobelY = abs(sobelY);
|
||
|
add(sobelX, sobelY, sobel);
|
||
|
sobelX.release();
|
||
|
sobelY.release();
|
||
|
return sobel;
|
||
|
}
|
||
|
|
||
|
static float g_c(Mat z, int x, int y, float l)
|
||
|
{
|
||
|
return 0.5f*l / sqrtf(l*l + z.at<float>(y,x)*z.at<float>(y,x));
|
||
|
}
|
||
|
|
||
|
static float g_p(Mat z, int x, int y, float l)
|
||
|
{
|
||
|
return 0.5f*l*l / (l*l + z.at<float>(y,x)*z.at<float>(y,x)) ;
|
||
|
}
|
||
|
|
||
|
void StereoVar::VariationalSolver(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level)
|
||
|
{
|
||
|
register int n, x, y;
|
||
|
float gl = 1, gr = 1, gu = 1, gd = 1, gc = 4;
|
||
|
Mat U;
|
||
|
Mat Sobel;
|
||
|
u.copyTo(U);
|
||
|
|
||
|
int N = nIt;
|
||
|
float l = lambda;
|
||
|
float Fi = fi;
|
||
|
|
||
|
double scale = pow(pyrScale, (double) level);
|
||
|
if (flags & USE_SMART_ID) {
|
||
|
N = (int) (N / scale);
|
||
|
Fi /= (float) scale;
|
||
|
l *= (float) scale;
|
||
|
}
|
||
|
for (n = 0; n < N; n++) {
|
||
|
if (penalization != PENALIZATION_TICHONOV) {if(!Sobel.empty()) Sobel.release(); Sobel = Gradient(U);}
|
||
|
for (x = 1; x < u.cols - 1; x++) {
|
||
|
for (y = 1 ; y < u.rows - 1; y++) {
|
||
|
switch (penalization) {
|
||
|
case PENALIZATION_CHARBONNIER:
|
||
|
gc = g_c(Sobel, x, y, l);
|
||
|
gl = gc + g_c(Sobel, x - 1, y, l);
|
||
|
gr = gc + g_c(Sobel, x + 1, y, l);
|
||
|
gu = gc + g_c(Sobel, x, y + 1, l);
|
||
|
gd = gc + g_c(Sobel, x, y - 1, l);
|
||
|
gc = gl + gr + gu + gd;
|
||
|
break;
|
||
|
case PENALIZATION_PERONA_MALIK:
|
||
|
gc = g_p(Sobel, x, y, l);
|
||
|
gl = gc + g_p(Sobel, x - 1, y, l);
|
||
|
gr = gc + g_p(Sobel, x + 1, y, l);
|
||
|
gu = gc + g_p(Sobel, x, y + 1, l);
|
||
|
gd = gc + g_p(Sobel, x, y - 1, l);
|
||
|
gc = gl + gr + gu + gd;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
float fi = Fi;
|
||
|
if (maxDisp > minDisp) {
|
||
|
if (U.at<float>(y,x) > maxDisp * scale) {fi*=1000; U.at<float>(y,x) = static_cast<float>(maxDisp * scale);}
|
||
|
if (U.at<float>(y,x) < minDisp * scale) {fi*=1000; U.at<float>(y,x) = static_cast<float>(minDisp * scale);}
|
||
|
}
|
||
|
|
||
|
int A = (int) (U.at<float>(y,x));
|
||
|
int neg = 0; if (U.at<float>(y,x) <= 0) neg = -1;
|
||
|
|
||
|
if (x + A >= u.cols)
|
||
|
u.at<float>(y, x) = U.at<float>(y, u.cols - A - 1);
|
||
|
else if (x + A + neg < 0)
|
||
|
u.at<float>(y, x) = U.at<float>(y, - A + 2);
|
||
|
else {
|
||
|
u.at<float>(y, x) = A + (I2x.at<float>(y, x + A + neg) * (I1.at<float>(y, x) - I2.at<float>(y, x + A))
|
||
|
+ fi * (gr * U.at<float>(y, x + 1) + gl * U.at<float>(y, x - 1) + gu * U.at<float>(y + 1, x) + gd * U.at<float>(y - 1, x) - gc * A))
|
||
|
/ (I2x.at<float>(y, x + A + neg) * I2x.at<float>(y, x + A + neg) + gc * fi) ;
|
||
|
}
|
||
|
}//y
|
||
|
u.at<float>(0, x) = u.at<float>(1, x);
|
||
|
u.at<float>(u.rows - 1, x) = u.at<float>(u.rows - 2, x);
|
||
|
}//x
|
||
|
for (y = 0; y < u.rows; y++) {
|
||
|
u.at<float>(y, 0) = u.at<float>(y, 1);
|
||
|
u.at<float>(y, u.cols - 1) = u.at<float>(y, u.cols - 2);
|
||
|
}
|
||
|
u.copyTo(U);
|
||
|
}//n
|
||
|
}
|
||
|
|
||
|
void StereoVar::VCycle_MyFAS(Mat &I1, Mat &I2, Mat &I2x, Mat &_u, int level)
|
||
|
{
|
||
|
CvSize imgSize = _u.size();
|
||
|
CvSize frmSize = cvSize((int) (imgSize.width * pyrScale + 0.5), (int) (imgSize.height * pyrScale + 0.5));
|
||
|
Mat I1_h, I2_h, I2x_h, u_h, U, U_h;
|
||
|
|
||
|
//PRE relaxation
|
||
|
VariationalSolver(I1, I2, I2x, _u, level);
|
||
|
|
||
|
if (level >= levels - 1) return;
|
||
|
level ++;
|
||
|
|
||
|
//scaling DOWN
|
||
|
resize(I1, I1_h, frmSize, 0, 0, INTER_AREA);
|
||
|
resize(I2, I2_h, frmSize, 0, 0, INTER_AREA);
|
||
|
resize(_u, u_h, frmSize, 0, 0, INTER_AREA);
|
||
|
u_h.convertTo(u_h, u_h.type(), pyrScale);
|
||
|
I2x_h = diffX(I2_h);
|
||
|
|
||
|
//Next level
|
||
|
U_h = u_h.clone();
|
||
|
VCycle_MyFAS(I1_h, I2_h, I2x_h, U_h, level);
|
||
|
|
||
|
subtract(U_h, u_h, U_h);
|
||
|
U_h.convertTo(U_h, U_h.type(), 1.0 / pyrScale);
|
||
|
|
||
|
//scaling UP
|
||
|
resize(U_h, U, imgSize);
|
||
|
|
||
|
//correcting the solution
|
||
|
add(_u, U, _u);
|
||
|
|
||
|
//POST relaxation
|
||
|
VariationalSolver(I1, I2, I2x, _u, level - 1);
|
||
|
|
||
|
if (flags & USE_MEDIAN_FILTERING) medianBlur(_u, _u, 3);
|
||
|
|
||
|
I1_h.release();
|
||
|
I2_h.release();
|
||
|
I2x_h.release();
|
||
|
u_h.release();
|
||
|
U.release();
|
||
|
U_h.release();
|
||
|
}
|
||
|
|
||
|
void StereoVar::FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level)
|
||
|
{
|
||
|
double scale = pow(pyrScale, (double) level);
|
||
|
CvSize frmSize = cvSize((int) (u.cols * scale + 0.5), (int) (u.rows * scale + 0.5));
|
||
|
Mat I1_h, I2_h, I2x_h, u_h;
|
||
|
|
||
|
//scaling DOWN
|
||
|
resize(I1, I1_h, frmSize, 0, 0, INTER_AREA);
|
||
|
resize(I2, I2_h, frmSize, 0, 0, INTER_AREA);
|
||
|
resize(u, u_h, frmSize, 0, 0, INTER_AREA);
|
||
|
u_h.convertTo(u_h, u_h.type(), scale);
|
||
|
I2x_h = diffX(I2_h);
|
||
|
|
||
|
switch (cycle) {
|
||
|
case CYCLE_O:
|
||
|
VariationalSolver(I1_h, I2_h, I2x_h, u_h, level);
|
||
|
break;
|
||
|
case CYCLE_V:
|
||
|
VCycle_MyFAS(I1_h, I2_h, I2x_h, u_h, level);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
u_h.convertTo(u_h, u_h.type(), 1.0 / scale);
|
||
|
|
||
|
//scaling UP
|
||
|
resize(u_h, u, u.size(), 0, 0, INTER_CUBIC);
|
||
|
|
||
|
I1_h.release();
|
||
|
I2_h.release();
|
||
|
I2x_h.release();
|
||
|
u_h.release();
|
||
|
|
||
|
level--;
|
||
|
if (flags & USE_MEDIAN_FILTERING) medianBlur(u, u, 3);
|
||
|
if (level >= 0) FMG(I1, I2, I2x, u, level);
|
||
|
}
|
||
|
|
||
|
void StereoVar::operator ()( const Mat& left, const Mat& right, Mat& disp )
|
||
|
{
|
||
|
CV_Assert(left.size() == right.size() && left.type() == right.type());
|
||
|
CvSize imgSize = left.size();
|
||
|
int MaxD = MAX(std::abs(minDisp), std::abs(maxDisp));
|
||
|
int SignD = 1; if (MIN(minDisp, maxDisp) < 0) SignD = -1;
|
||
|
if (minDisp >= maxDisp) {MaxD = 256; SignD = 1;}
|
||
|
|
||
|
Mat u;
|
||
|
if ((flags & USE_INITIAL_DISPARITY) && (!disp.empty())) {
|
||
|
CV_Assert(disp.size() == left.size() && disp.type() == CV_8UC1);
|
||
|
disp.convertTo(u, CV_32FC1, static_cast<double>(SignD * MaxD) / 256);
|
||
|
} else {
|
||
|
u.create(imgSize, CV_32FC1);
|
||
|
u.setTo(0);
|
||
|
}
|
||
|
|
||
|
// Preprocessing
|
||
|
Mat leftgray, rightgray;
|
||
|
if (left.type() != CV_8UC1) {
|
||
|
cvtColor(left, leftgray, CV_BGR2GRAY);
|
||
|
cvtColor(right, rightgray, CV_BGR2GRAY);
|
||
|
} else {
|
||
|
left.copyTo(leftgray);
|
||
|
right.copyTo(rightgray);
|
||
|
}
|
||
|
if (flags & USE_EQUALIZE_HIST) {
|
||
|
equalizeHist(leftgray, leftgray);
|
||
|
equalizeHist(rightgray, rightgray);
|
||
|
}
|
||
|
if (poly_sigma > 0.0001) {
|
||
|
GaussianBlur(leftgray, leftgray, cvSize(poly_n, poly_n), poly_sigma);
|
||
|
GaussianBlur(rightgray, rightgray, cvSize(poly_n, poly_n), poly_sigma);
|
||
|
}
|
||
|
|
||
|
Mat I1, I2;
|
||
|
leftgray.convertTo(I1, CV_32FC1);
|
||
|
rightgray.convertTo(I2, CV_32FC1);
|
||
|
leftgray.release();
|
||
|
rightgray.release();
|
||
|
|
||
|
Mat I2x = diffX(I2);
|
||
|
|
||
|
FMG(I1, I2, I2x, u, levels - 1);
|
||
|
|
||
|
I1.release();
|
||
|
I2.release();
|
||
|
I2x.release();
|
||
|
|
||
|
|
||
|
disp.create( left.size(), CV_8UC1 );
|
||
|
u = abs(u);
|
||
|
u.convertTo(disp, disp.type(), 256 / MaxD, 0);
|
||
|
|
||
|
u.release();
|
||
|
}
|
||
|
} // namespace
|