opencv/3rdparty/libwebp/utils/bit_reader.h

332 lines
11 KiB
C
Raw Normal View History

2013-03-04 20:57:25 +04:00
// Copyright 2010 Google Inc. All Rights Reserved.
//
2013-06-29 22:01:02 +04:00
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
2013-03-04 20:57:25 +04:00
// -----------------------------------------------------------------------------
//
// Boolean decoder
//
// Author: Skal (pascal.massimino@gmail.com)
// Vikas Arora (vikaas.arora@gmail.com)
#ifndef WEBP_UTILS_BIT_READER_H_
#define WEBP_UTILS_BIT_READER_H_
#include <assert.h>
#ifdef _MSC_VER
#include <stdlib.h> // _byteswap_ulong
#endif
#include <string.h> // For memcpy
#include "../webp/types.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
2013-04-02 15:22:10 +04:00
// The Boolean decoder needs to maintain infinite precision on the value_ field.
// However, since range_ is only 8bit, we only need an active window of 8 bits
// for value_. Left bits (MSB) gets zeroed and shifted away when value_ falls
// below 128, range_ is updated, and fresh bits read from the bitstream are
// brought in as LSB.
// To avoid reading the fresh bits one by one (slow), we cache a few of them
// ahead (actually, we cache BITS of them ahead. See below). There's two
// strategies regarding how to shift these looked-ahead fresh bits into the
// 8bit window of value_: either we shift them in, while keeping the position of
// the window fixed. Or we slide the window to the right while keeping the cache
// bits at a fixed, right-justified, position.
//
// Example, for BITS=16: here is the content of value_ for both strategies:
//
// !USE_RIGHT_JUSTIFY || USE_RIGHT_JUSTIFY
// ||
// <- 8b -><- 8b -><- BITS bits -> || <- 8b+3b -><- 8b -><- 13 bits ->
// [unused][value_][cached bits][0] || [unused...][value_][cached bits]
// [........00vvvvvvBBBBBBBBBBBBB000]LSB || [...........00vvvvvvBBBBBBBBBBBBB]
// ||
// After calling VP8Shift(), where we need to shift away two zeros:
// [........vvvvvvvvBBBBBBBBBBB00000]LSB || [.............vvvvvvvvBBBBBBBBBBB]
// ||
// Just before we need to call VP8LoadNewBytes(), the situation is:
// [........vvvvvv000000000000000000]LSB || [..........................vvvvvv]
// ||
// And just after calling VP8LoadNewBytes():
// [........vvvvvvvvBBBBBBBBBBBBBBBB]LSB || [........vvvvvvvvBBBBBBBBBBBBBBBB]
//
// -> we're back to height active 'value_' bits (marked 'v') and BITS cached
// bits (marked 'B')
//
// The right-justify strategy tends to use less shifts and is often faster.
//------------------------------------------------------------------------------
// BITS can be any multiple of 8 from 8 to 56 (inclusive).
// Pick values that fit natural register size.
#if !defined(WEBP_REFERENCE_IMPLEMENTATION)
#define USE_RIGHT_JUSTIFY
#if defined(__i386__) || defined(_M_IX86) // x86 32bit
#define BITS 16
#elif defined(__x86_64__) || defined(_M_X64) // x86 64bit
#define BITS 56
#elif defined(__arm__) || defined(_M_ARM) // ARM
#define BITS 24
#else // reasonable default
#define BITS 24
#endif
#else // reference choices
#define USE_RIGHT_JUSTIFY
#define BITS 8
#endif
//------------------------------------------------------------------------------
// Derived types and constants
// bit_t = natural register type
// lbit_t = natural type for memory I/O
#if (BITS > 32)
typedef uint64_t bit_t;
typedef uint64_t lbit_t;
#elif (BITS == 32)
typedef uint64_t bit_t;
typedef uint32_t lbit_t;
#elif (BITS == 24)
typedef uint32_t bit_t;
typedef uint32_t lbit_t;
2013-03-04 20:57:25 +04:00
#elif (BITS == 16)
typedef uint32_t bit_t;
typedef uint16_t lbit_t;
#else
typedef uint32_t bit_t;
typedef uint8_t lbit_t;
#endif
2013-04-02 15:22:10 +04:00
#ifndef USE_RIGHT_JUSTIFY
typedef bit_t range_t; // type for storing range_
#define MASK ((((bit_t)1) << (BITS)) - 1)
#else
typedef uint32_t range_t; // range_ only uses 8bits here. No need for bit_t.
#endif
2013-03-04 20:57:25 +04:00
//------------------------------------------------------------------------------
2013-04-02 15:22:10 +04:00
// Bitreader
2013-03-04 20:57:25 +04:00
typedef struct VP8BitReader VP8BitReader;
struct VP8BitReader {
const uint8_t* buf_; // next byte to be read
const uint8_t* buf_end_; // end of read buffer
int eof_; // true if input is exhausted
// boolean decoder
2013-04-02 15:22:10 +04:00
range_t range_; // current range minus 1. In [127, 254] interval.
bit_t value_; // current value
int bits_; // number of valid bits left
2013-03-04 20:57:25 +04:00
};
// Initialize the bit reader and the boolean decoder.
void VP8InitBitReader(VP8BitReader* const br,
const uint8_t* const start, const uint8_t* const end);
// return the next value made of 'num_bits' bits
uint32_t VP8GetValue(VP8BitReader* const br, int num_bits);
static WEBP_INLINE uint32_t VP8Get(VP8BitReader* const br) {
return VP8GetValue(br, 1);
}
// return the next value with sign-extension.
int32_t VP8GetSignedValue(VP8BitReader* const br, int num_bits);
// Read a bit with proba 'prob'. Speed-critical function!
extern const uint8_t kVP8Log2Range[128];
2013-04-02 15:22:10 +04:00
extern const range_t kVP8NewRange[128];
2013-03-04 20:57:25 +04:00
void VP8LoadFinalBytes(VP8BitReader* const br); // special case for the tail
static WEBP_INLINE void VP8LoadNewBytes(VP8BitReader* const br) {
2013-04-02 15:22:10 +04:00
assert(br != NULL && br->buf_ != NULL);
2013-03-04 20:57:25 +04:00
// Read 'BITS' bits at a time if possible.
if (br->buf_ + sizeof(lbit_t) <= br->buf_end_) {
// convert memory type to register type (with some zero'ing!)
bit_t bits;
lbit_t in_bits = *(lbit_t*)br->buf_;
br->buf_ += (BITS) >> 3;
#if !defined(__BIG_ENDIAN__)
2013-04-02 15:22:10 +04:00
#if (BITS > 32)
// gcc 4.3 has builtin functions for swap32/swap64
#if defined(__GNUC__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
bits = (bit_t)__builtin_bswap64(in_bits);
#elif defined(_MSC_VER)
bits = (bit_t)_byteswap_uint64(in_bits);
#elif defined(__x86_64__)
__asm__ volatile("bswapq %0" : "=r"(bits) : "0"(in_bits));
#else // generic code for swapping 64-bit values (suggested by bdb@)
bits = (bit_t)in_bits;
bits = ((bits & 0xffffffff00000000ull) >> 32) |
((bits & 0x00000000ffffffffull) << 32);
bits = ((bits & 0xffff0000ffff0000ull) >> 16) |
((bits & 0x0000ffff0000ffffull) << 16);
bits = ((bits & 0xff00ff00ff00ff00ull) >> 8) |
((bits & 0x00ff00ff00ff00ffull) << 8);
#endif
bits >>= 64 - BITS;
#elif (BITS >= 24)
2013-03-04 20:57:25 +04:00
#if defined(__i386__) || defined(__x86_64__)
__asm__ volatile("bswap %k0" : "=r"(in_bits) : "0"(in_bits));
2013-04-02 15:22:10 +04:00
bits = (bit_t)in_bits; // 24b/32b -> 32b/64b zero-extension
2013-03-04 20:57:25 +04:00
#elif defined(_MSC_VER)
2013-04-02 15:22:10 +04:00
bits = (bit_t)_byteswap_ulong(in_bits);
2013-03-04 20:57:25 +04:00
#else
bits = (bit_t)(in_bits >> 24) | ((in_bits >> 8) & 0xff00)
| ((in_bits << 8) & 0xff0000) | (in_bits << 24);
#endif // x86
2013-04-02 15:22:10 +04:00
bits >>= (32 - BITS);
2013-03-04 20:57:25 +04:00
#elif (BITS == 16)
// gcc will recognize a 'rorw $8, ...' here:
bits = (bit_t)(in_bits >> 8) | ((in_bits & 0xff) << 8);
#else // BITS == 8
bits = (bit_t)in_bits;
#endif
2013-04-02 15:22:10 +04:00
#else // BIG_ENDIAN
2013-03-04 20:57:25 +04:00
bits = (bit_t)in_bits;
2013-06-29 22:01:02 +04:00
if (BITS != 8 * sizeof(bit_t)) bits >>= (8 * sizeof(bit_t) - BITS);
2013-03-04 20:57:25 +04:00
#endif
2013-04-02 15:22:10 +04:00
#ifndef USE_RIGHT_JUSTIFY
br->value_ |= bits << (-br->bits_);
#else
br->value_ = bits | (br->value_ << (BITS));
#endif
br->bits_ += (BITS);
2013-03-04 20:57:25 +04:00
} else {
VP8LoadFinalBytes(br); // no need to be inlined
}
}
2013-04-02 15:22:10 +04:00
static WEBP_INLINE int VP8BitUpdate(VP8BitReader* const br, range_t split) {
if (br->bits_ < 0) { // Make sure we have a least BITS bits in 'value_'
2013-03-04 20:57:25 +04:00
VP8LoadNewBytes(br);
}
2013-04-02 15:22:10 +04:00
#ifndef USE_RIGHT_JUSTIFY
split |= (MASK);
if (br->value_ > split) {
br->range_ -= split + 1;
br->value_ -= split + 1;
2013-03-04 20:57:25 +04:00
return 1;
} else {
2013-04-02 15:22:10 +04:00
br->range_ = split;
2013-03-04 20:57:25 +04:00
return 0;
}
2013-04-02 15:22:10 +04:00
#else
{
const int pos = br->bits_;
const range_t value = (range_t)(br->value_ >> pos);
if (value > split) {
br->range_ -= split + 1;
br->value_ -= (bit_t)(split + 1) << pos;
return 1;
} else {
br->range_ = split;
return 0;
}
}
#endif
2013-03-04 20:57:25 +04:00
}
static WEBP_INLINE void VP8Shift(VP8BitReader* const br) {
2013-04-02 15:22:10 +04:00
#ifndef USE_RIGHT_JUSTIFY
2013-03-04 20:57:25 +04:00
// range_ is in [0..127] interval here.
2013-04-02 15:22:10 +04:00
const bit_t idx = br->range_ >> (BITS);
2013-03-04 20:57:25 +04:00
const int shift = kVP8Log2Range[idx];
br->range_ = kVP8NewRange[idx];
br->value_ <<= shift;
2013-04-02 15:22:10 +04:00
br->bits_ -= shift;
#else
const int shift = kVP8Log2Range[br->range_];
assert(br->range_ < (range_t)128);
br->range_ = kVP8NewRange[br->range_];
br->bits_ -= shift;
#endif
2013-03-04 20:57:25 +04:00
}
static WEBP_INLINE int VP8GetBit(VP8BitReader* const br, int prob) {
2013-04-02 15:22:10 +04:00
#ifndef USE_RIGHT_JUSTIFY
2013-03-04 20:57:25 +04:00
// It's important to avoid generating a 64bit x 64bit multiply here.
// We just need an 8b x 8b after all.
2013-04-02 15:22:10 +04:00
const range_t split =
(range_t)((uint32_t)(br->range_ >> (BITS)) * prob) << ((BITS) - 8);
const int bit = VP8BitUpdate(br, split);
if (br->range_ <= (((range_t)0x7e << (BITS)) | (MASK))) {
VP8Shift(br);
}
return bit;
#else
const range_t split = (br->range_ * prob) >> 8;
2013-03-04 20:57:25 +04:00
const int bit = VP8BitUpdate(br, split);
2013-04-02 15:22:10 +04:00
if (br->range_ <= (range_t)0x7e) {
2013-03-04 20:57:25 +04:00
VP8Shift(br);
}
return bit;
2013-04-02 15:22:10 +04:00
#endif
2013-03-04 20:57:25 +04:00
}
static WEBP_INLINE int VP8GetSigned(VP8BitReader* const br, int v) {
2013-04-02 15:22:10 +04:00
const range_t split = (br->range_ >> 1);
2013-03-04 20:57:25 +04:00
const int bit = VP8BitUpdate(br, split);
VP8Shift(br);
return bit ? -v : v;
}
// -----------------------------------------------------------------------------
2013-04-02 15:22:10 +04:00
// Bitreader for lossless format
typedef uint64_t vp8l_val_t; // right now, this bit-reader can only use 64bit.
2013-03-04 20:57:25 +04:00
typedef struct {
2013-04-02 15:22:10 +04:00
vp8l_val_t val_; // pre-fetched bits
const uint8_t* buf_; // input byte buffer
size_t len_; // buffer length
size_t pos_; // byte position in buf_
int bit_pos_; // current bit-reading position in val_
int eos_; // bitstream is finished
int error_; // an error occurred (buffer overflow attempt...)
2013-03-04 20:57:25 +04:00
} VP8LBitReader;
void VP8LInitBitReader(VP8LBitReader* const br,
const uint8_t* const start,
size_t length);
// Sets a new data buffer.
void VP8LBitReaderSetBuffer(VP8LBitReader* const br,
const uint8_t* const buffer, size_t length);
// Reads the specified number of bits from Read Buffer.
// Flags an error in case end_of_stream or n_bits is more than allowed limit.
// Flags eos if this read attempt is going to cross the read buffer.
uint32_t VP8LReadBits(VP8LBitReader* const br, int n_bits);
2013-04-02 15:22:10 +04:00
// Return the prefetched bits, so they can be looked up.
static WEBP_INLINE uint32_t VP8LPrefetchBits(VP8LBitReader* const br) {
return (uint32_t)(br->val_ >> br->bit_pos_);
}
// Discard 'num_bits' bits from the cache.
static WEBP_INLINE void VP8LDiscardBits(VP8LBitReader* const br, int num_bits) {
br->bit_pos_ += num_bits;
2013-03-04 20:57:25 +04:00
}
// Advances the Read buffer by 4 bytes to make room for reading next 32 bits.
void VP8LFillBitWindow(VP8LBitReader* const br);
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif
#endif /* WEBP_UTILS_BIT_READER_H_ */