opencv/samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp

129 lines
3.1 KiB
C++
Raw Normal View History

/**
* @file HoughLines_Demo.cpp
* @brief Demo code for Hough Transform
* @author OpenCV team
*/
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace cv;
using namespace std;
/// Global variables
/** General variables */
2012-10-17 11:12:04 +04:00
Mat src, edges;
Mat src_gray;
Mat standard_hough, probabilistic_hough;
int min_threshold = 50;
int max_trackbar = 150;
char* standard_name = "Standard Hough Lines Demo";
char* probabilistic_name = "Probabilistic Hough Lines Demo";
int s_trackbar = max_trackbar;
int p_trackbar = max_trackbar;
/// Function Headers
void help();
void Standard_Hough( int, void* );
void Probabilistic_Hough( int, void* );
/**
* @function main
*/
int main( int argc, char** argv )
{
/// Read the image
src = imread( argv[1], 1 );
if( src.empty() )
{ help();
return -1;
}
/// Pass the image to gray
cvtColor( src, src_gray, CV_RGB2GRAY );
2012-10-17 11:12:04 +04:00
/// Apply Canny edge detector
Canny( src_gray, edges, 50, 200, 3 );
/// Create Trackbars for Thresholds
char thresh_label[50];
sprintf( thresh_label, "Thres: %d + input", min_threshold );
namedWindow( standard_name, CV_WINDOW_AUTOSIZE );
createTrackbar( thresh_label, standard_name, &s_trackbar, max_trackbar, Standard_Hough);
namedWindow( probabilistic_name, CV_WINDOW_AUTOSIZE );
createTrackbar( thresh_label, probabilistic_name, &p_trackbar, max_trackbar, Probabilistic_Hough);
/// Initialize
Standard_Hough(0, 0);
Probabilistic_Hough(0, 0);
waitKey(0);
return 0;
}
/**
* @function help
* @brief Indications of how to run this program and why is it for
*/
void help()
{
printf("\t Hough Transform to detect lines \n ");
printf("\t---------------------------------\n ");
printf(" Usage: ./HoughLines_Demo <image_name> \n");
}
/**
* @function Standard_Hough
*/
void Standard_Hough( int, void* )
{
vector<Vec2f> s_lines;
cvtColor( edges, standard_hough, CV_GRAY2BGR );
/// 1. Use Standard Hough Transform
2012-10-17 11:12:04 +04:00
HoughLines( edges, s_lines, 1, CV_PI/180, min_threshold + s_trackbar, 0, 0 );
/// Show the result
for( int i = 0; i < s_lines.size(); i++ )
{
float r = s_lines[i][0], t = s_lines[i][1];
double cos_t = cos(t), sin_t = sin(t);
double x0 = r*cos_t, y0 = r*sin_t;
double alpha = 1000;
Point pt1( cvRound(x0 + alpha*(-sin_t)), cvRound(y0 + alpha*cos_t) );
Point pt2( cvRound(x0 - alpha*(-sin_t)), cvRound(y0 - alpha*cos_t) );
2012-10-17 11:12:04 +04:00
line( standard_hough, pt1, pt2, Scalar(255,0,0), 3, CV_AA);
}
imshow( standard_name, standard_hough );
}
/**
* @function Probabilistic_Hough
*/
void Probabilistic_Hough( int, void* )
{
vector<Vec4i> p_lines;
cvtColor( edges, probabilistic_hough, CV_GRAY2BGR );
/// 2. Use Probabilistic Hough Transform
HoughLinesP( edges, p_lines, 1, CV_PI/180, min_threshold + p_trackbar, 30, 10 );
/// Show the result
for( size_t i = 0; i < p_lines.size(); i++ )
{
Vec4i l = p_lines[i];
line( probabilistic_hough, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(255,0,0), 3, CV_AA);
}
imshow( probabilistic_name, probabilistic_hough );
}