opencv/samples/gpu/performance/performance.h

190 lines
4.7 KiB
C
Raw Normal View History

2013-07-24 13:55:18 +04:00
#ifndef OPENCV_CUDA_SAMPLE_PERFORMANCE_H_
#define OPENCV_CUDA_SAMPLE_PERFORMANCE_H_
2012-10-17 11:12:04 +04:00
#include <iostream>
#include <cstdio>
#include <vector>
#include <numeric>
#include <string>
#include <opencv2/core/utility.hpp>
2013-07-24 11:41:44 +04:00
#include "opencv2/cuda.hpp"
2012-10-17 11:12:04 +04:00
#define TAB " "
class Runnable
{
public:
explicit Runnable(const std::string& nameStr): name_(nameStr) {}
virtual ~Runnable() {}
const std::string& name() const { return name_; }
virtual void run() = 0;
private:
std::string name_;
};
class TestSystem
{
public:
static TestSystem& instance()
{
static TestSystem me;
return me;
}
void setWorkingDir(const std::string& val) { working_dir_ = val; }
const std::string& workingDir() const { return working_dir_; }
void setTestFilter(const std::string& val) { test_filter_ = val; }
const std::string& testFilter() const { return test_filter_; }
void setNumIters(int num_iters) { num_iters_ = num_iters; }
void addInit(Runnable* init) { inits_.push_back(init); }
void addTest(Runnable* test) { tests_.push_back(test); }
void run();
// It's public because OpenCV callback uses it
void printError(const std::string& msg);
std::stringstream& startNewSubtest()
{
finishCurrentSubtest();
return cur_subtest_description_;
}
bool stop() const { return cur_iter_idx_ >= num_iters_; }
void cpuOn() { cpu_started_ = cv::getTickCount(); }
void cpuOff()
{
int64 delta = cv::getTickCount() - cpu_started_;
cpu_times_.push_back(delta);
++cur_iter_idx_;
}
void cpuComplete()
{
cpu_elapsed_ += meanTime(cpu_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
void gpuOn() { gpu_started_ = cv::getTickCount(); }
void gpuOff()
{
int64 delta = cv::getTickCount() - gpu_started_;
gpu_times_.push_back(delta);
++cur_iter_idx_;
}
void gpuComplete()
{
gpu_elapsed_ += meanTime(gpu_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
bool isListMode() const { return is_list_mode_; }
void setListMode(bool value) { is_list_mode_ = value; }
private:
TestSystem():
cur_subtest_is_empty_(true), cpu_elapsed_(0),
gpu_elapsed_(0), speedup_total_(0.0),
num_subtests_called_(0), is_list_mode_(false),
num_iters_(10), cur_iter_idx_(0)
{
cpu_times_.reserve(num_iters_);
gpu_times_.reserve(num_iters_);
}
void finishCurrentSubtest();
void resetCurrentSubtest()
{
cpu_elapsed_ = 0;
gpu_elapsed_ = 0;
cur_subtest_description_.str("");
cur_subtest_is_empty_ = true;
cur_iter_idx_ = 0;
cpu_times_.clear();
gpu_times_.clear();
}
double meanTime(const std::vector<int64> &samples);
void printHeading();
void printSummary();
void printMetrics(double cpu_time, double gpu_time, double speedup);
std::string working_dir_;
std::string test_filter_;
std::vector<Runnable*> inits_;
std::vector<Runnable*> tests_;
std::stringstream cur_subtest_description_;
bool cur_subtest_is_empty_;
int64 cpu_started_;
int64 gpu_started_;
double cpu_elapsed_;
double gpu_elapsed_;
double speedup_total_;
int num_subtests_called_;
bool is_list_mode_;
int num_iters_;
int cur_iter_idx_;
std::vector<int64> cpu_times_;
std::vector<int64> gpu_times_;
};
#define GLOBAL_INIT(name) \
struct name##_init: Runnable { \
name##_init(): Runnable(#name) { \
TestSystem::instance().addInit(this); \
} \
void run(); \
} name##_init_instance; \
void name##_init::run()
#define TEST(name) \
struct name##_test: Runnable { \
name##_test(): Runnable(#name) { \
TestSystem::instance().addTest(this); \
} \
void run(); \
} name##_test_instance; \
void name##_test::run()
#define SUBTEST TestSystem::instance().startNewSubtest()
#define CPU_ON \
while (!TestSystem::instance().stop()) { \
TestSystem::instance().cpuOn()
#define CPU_OFF \
TestSystem::instance().cpuOff(); \
} TestSystem::instance().cpuComplete()
2013-07-24 13:55:18 +04:00
#define CUDA_ON \
2012-10-17 11:12:04 +04:00
while (!TestSystem::instance().stop()) { \
TestSystem::instance().gpuOn()
2013-07-24 13:55:18 +04:00
#define CUDA_OFF \
2012-10-17 11:12:04 +04:00
TestSystem::instance().gpuOff(); \
} TestSystem::instance().gpuComplete()
// Generates a matrix
void gen(cv::Mat& mat, int rows, int cols, int type, cv::Scalar low,
cv::Scalar high);
// Returns abs path taking into account test system working dir
std::string abspath(const std::string& relpath);
2013-07-24 13:55:18 +04:00
#endif // OPENCV_CUDA_SAMPLE_PERFORMANCE_H_