260 lines
9.7 KiB
C++
260 lines
9.7 KiB
C++
|
#include <cv.h>
|
||
|
#include <cvaux.h>
|
||
|
#include <highgui.h>
|
||
|
#include <iostream>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
inline Point2f applyHomography( const Mat_<double>& H, const Point2f& pt )
|
||
|
{
|
||
|
double z = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2);
|
||
|
if( z )
|
||
|
{
|
||
|
double w = 1./z;
|
||
|
return Point2f( (H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w, (H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w );
|
||
|
}
|
||
|
return Point2f( numeric_limits<double>::max(), numeric_limits<double>::max() );
|
||
|
}
|
||
|
|
||
|
Mat warpPerspectiveRand( const Mat& src, Mat& dst, RNG* rng )
|
||
|
{
|
||
|
Mat H(3, 3, CV_32FC1);
|
||
|
H.at<float>(0,0) = rng->uniform( 0.8f, 1.2f);
|
||
|
H.at<float>(0,1) = rng->uniform(-0.1f, 0.1f);
|
||
|
H.at<float>(0,2) = rng->uniform(-0.1f, 0.1f)*src.cols;
|
||
|
H.at<float>(1,0) = rng->uniform(-0.1f, 0.1f);
|
||
|
H.at<float>(1,1) = rng->uniform( 0.8f, 1.2f);
|
||
|
H.at<float>(1,2) = rng->uniform(-0.1f, 0.3f)*src.rows;
|
||
|
H.at<float>(2,0) = rng->uniform( -1e-4f, 1e-4f);
|
||
|
H.at<float>(2,1) = rng->uniform( -1e-4f, 1e-4f);
|
||
|
H.at<float>(2,2) = rng->uniform( 0.8f, 1.1f);
|
||
|
|
||
|
warpPerspective( src, dst, H, src.size() );
|
||
|
return H;
|
||
|
}
|
||
|
|
||
|
FeatureDetector* createDetector( const string& detectorType )
|
||
|
{
|
||
|
FeatureDetector* fd = 0;
|
||
|
if( !detectorType.compare( "FAST" ) )
|
||
|
{
|
||
|
fd = new FastFeatureDetector( 10/*threshold*/, true/*nonmax_suppression*/ );
|
||
|
}
|
||
|
else if( !detectorType.compare( "STAR" ) )
|
||
|
{
|
||
|
fd = new StarFeatureDetector( 16/*max_size*/, 5/*response_threshold*/, 10/*line_threshold_projected*/,
|
||
|
8/*line_threshold_binarized*/, 5/*suppress_nonmax_size*/ );
|
||
|
}
|
||
|
else if( !detectorType.compare( "SIFT" ) )
|
||
|
{
|
||
|
fd = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(),
|
||
|
SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD());
|
||
|
}
|
||
|
else if( !detectorType.compare( "SURF" ) )
|
||
|
{
|
||
|
fd = new SurfFeatureDetector( 100./*hessian_threshold*/, 3 /*octaves*/, 4/*octave_layers*/ );
|
||
|
}
|
||
|
else if( !detectorType.compare( "MSER" ) )
|
||
|
{
|
||
|
fd = new MserFeatureDetector( 5/*delta*/, 60/*min_area*/, 14400/*_max_area*/, 0.25f/*max_variation*/,
|
||
|
0.2/*min_diversity*/, 200/*max_evolution*/, 1.01/*area_threshold*/, 0.003/*min_margin*/,
|
||
|
5/*edge_blur_size*/ );
|
||
|
}
|
||
|
else if( !detectorType.compare( "GFTT" ) )
|
||
|
{
|
||
|
fd = new GoodFeaturesToTrackDetector( 1000/*maxCorners*/, 0.01/*qualityLevel*/, 1./*minDistance*/,
|
||
|
3/*int _blockSize*/, true/*useHarrisDetector*/, 0.04/*k*/ );
|
||
|
}
|
||
|
else
|
||
|
assert(0);
|
||
|
return fd;
|
||
|
}
|
||
|
|
||
|
GenericDescriptorMatch* createDescriptorMatch( const string& descriptorType )
|
||
|
{
|
||
|
GenericDescriptorMatch* de = 0;
|
||
|
if( !descriptorType.compare( "SIFT" ) )
|
||
|
{
|
||
|
SiftDescriptorExtractor extractor/*( double magnification=SIFT::DescriptorParams::GET_DEFAULT_MAGNIFICATION(),
|
||
|
bool isNormalize=true, bool recalculateAngles=true,
|
||
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
|
||
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
||
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
|
||
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE )*/;
|
||
|
BruteForceMatcher<L2<float> > matcher;
|
||
|
de = new VectorDescriptorMatch<SiftDescriptorExtractor, BruteForceMatcher<L2<float> > >(extractor, matcher);
|
||
|
|
||
|
}
|
||
|
else if( !descriptorType.compare( "SURF" ) )
|
||
|
{
|
||
|
SurfDescriptorExtractor extractor/*( int nOctaves=4,
|
||
|
int nOctaveLayers=2, bool extended=false )*/;
|
||
|
BruteForceMatcher<L2<float> > matcher;
|
||
|
de = new VectorDescriptorMatch<SurfDescriptorExtractor, BruteForceMatcher<L2<float> > >(extractor, matcher);
|
||
|
}
|
||
|
else
|
||
|
assert(0);
|
||
|
return de;
|
||
|
}
|
||
|
|
||
|
void drawCorrespondences( const Mat& img1, const Mat& img2,
|
||
|
const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
|
||
|
const vector<int>& matches, Mat& drawImg, const Mat& H12 = Mat() )
|
||
|
{
|
||
|
Scalar RED = CV_RGB(255, 0, 0); // red keypoint - point without corresponding point
|
||
|
Scalar GREEN = CV_RGB(0, 255, 0); // green keypoint - point having correct corresponding point
|
||
|
Scalar BLUE = CV_RGB(0, 0, 255); // blue keypoint - point having incorrect corresponding point
|
||
|
|
||
|
Size size(img1.cols + img2.cols, MAX(img1.rows, img2.rows));
|
||
|
drawImg.create(size, CV_MAKETYPE(img1.depth(), 3));
|
||
|
Mat drawImg1 = drawImg(Rect(0, 0, img1.cols, img1.rows));
|
||
|
cvtColor(img1, drawImg1, CV_GRAY2RGB);
|
||
|
Mat drawImg2 = drawImg(Rect(img1.cols, 0, img2.cols, img2.rows));
|
||
|
cvtColor(img2, drawImg2, CV_GRAY2RGB);
|
||
|
|
||
|
// draw keypoints
|
||
|
for(vector<KeyPoint>::const_iterator it = keypoints1.begin(); it < keypoints1.end(); ++it )
|
||
|
{
|
||
|
circle(drawImg, it->pt, 3, RED);
|
||
|
}
|
||
|
for(vector<KeyPoint>::const_iterator it = keypoints2.begin(); it < keypoints2.end(); ++it )
|
||
|
{
|
||
|
Point p = it->pt;
|
||
|
circle(drawImg, Point2f(p.x+img1.cols, p.y), 3, RED);
|
||
|
}
|
||
|
|
||
|
// draw matches
|
||
|
vector<int>::const_iterator mit = matches.begin();
|
||
|
assert( matches.size() == keypoints1.size() );
|
||
|
for( int i1 = 0; mit != matches.end(); ++mit, i1++ )
|
||
|
{
|
||
|
Point2f pt1 = keypoints1[i1].pt,
|
||
|
pt2 = keypoints2[*mit].pt,
|
||
|
dpt2 = Point2f( std::min(pt2.x+img1.cols, float(drawImg.cols-1)), pt2.y);
|
||
|
if( !H12.empty() )
|
||
|
{
|
||
|
if( norm(pt2 - applyHomography(H12, pt1)) > 3 )
|
||
|
{
|
||
|
circle(drawImg, pt1, 3, BLUE);
|
||
|
circle(drawImg, dpt2, 3, BLUE);
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
circle(drawImg, pt1, 3, GREEN);
|
||
|
circle(drawImg, dpt2, 3, GREEN);
|
||
|
line(drawImg, pt1, dpt2, GREEN);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const string winName = "correspondences";
|
||
|
|
||
|
void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective, vector<KeyPoint>& keypoints1,
|
||
|
Ptr<FeatureDetector>& detector, Ptr<GenericDescriptorMatch>& descriptor,
|
||
|
double ransacReprojThreshold = -1, RNG* rng = 0 )
|
||
|
{
|
||
|
assert( !img1.empty() );
|
||
|
Mat H12;
|
||
|
if( isWarpPerspective )
|
||
|
{
|
||
|
assert( rng );
|
||
|
H12 = warpPerspectiveRand(img1, img2, rng);
|
||
|
}
|
||
|
else
|
||
|
assert( !img2.empty() && img2.cols==img1.cols && img2.rows== img1.rows );
|
||
|
|
||
|
cout << endl << "< Extracting keypoints from second image..." << endl;
|
||
|
vector<KeyPoint> keypoints2;
|
||
|
detector->detect( img2, keypoints2 );
|
||
|
cout << keypoints2.size() << " >" << endl;
|
||
|
|
||
|
cout << "< Computing and matching descriptors..." << endl;
|
||
|
vector<int> matches;
|
||
|
//if( keypoints1.size()>0 && keypoints2.size()>0 )
|
||
|
{
|
||
|
descriptor->clear();
|
||
|
descriptor->add( img2, keypoints2 );
|
||
|
descriptor->match( img1, keypoints1, matches );
|
||
|
}
|
||
|
cout << ">" << endl;
|
||
|
|
||
|
if( !isWarpPerspective && ransacReprojThreshold >= 0 )
|
||
|
{
|
||
|
cout << "< Computing homography (RANSAC)..." << endl;
|
||
|
vector<Point2f> points1(matches.size()), points2(matches.size());
|
||
|
for( int i = 0; i < matches.size(); i++ )
|
||
|
{
|
||
|
points1[i] = keypoints1[i].pt;
|
||
|
points2[i] = keypoints2[matches[i]].pt;
|
||
|
}
|
||
|
H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold );
|
||
|
cout << ">" << endl;
|
||
|
}
|
||
|
|
||
|
Mat drawImg;
|
||
|
drawCorrespondences( img1, img2, keypoints1, keypoints2, matches, drawImg, H12 );
|
||
|
imshow( winName, drawImg );
|
||
|
}
|
||
|
|
||
|
int main(int argc, char** argv)
|
||
|
{
|
||
|
if( argc != 4 && argc != 6 )
|
||
|
{
|
||
|
cout << "Format:" << endl;
|
||
|
cout << "case1: second image is obtained from the first (given) image using random generated homography matrix" << endl;
|
||
|
cout << argv[0] << " [detectorType] [descriptorType] [image1]" << endl;
|
||
|
cout << "case2: both images are given. If ransacReprojThreshold>=0 then homography matrix are calculated" << endl;
|
||
|
cout << argv[0] << " [detectorType] [descriptorType] [image1] [image2] [ransacReprojThreshold]" << endl;
|
||
|
cout << endl << "Mathes are filtered using homography matrix in case1 and case2 (if ransacReprojThreshold>=0)" << endl;
|
||
|
return 0;
|
||
|
}
|
||
|
bool isWarpPerspective = argc == 4;
|
||
|
double ransacReprojThreshold = -1;
|
||
|
if( !isWarpPerspective )
|
||
|
ransacReprojThreshold = atof(argv[5]);
|
||
|
|
||
|
cout << "< Creating detector, descriptor..." << endl;
|
||
|
Ptr<FeatureDetector> detector = createDetector(argv[1]);
|
||
|
Ptr<GenericDescriptorMatch> descriptor = createDescriptorMatch(argv[2]);
|
||
|
cout << ">" << endl;
|
||
|
if( detector.empty() || descriptor.empty() )
|
||
|
{
|
||
|
cout << "Can not create detector or descriptor or matcher of given types" << endl;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
cout << "< Reading the images..." << endl;
|
||
|
Mat img1 = imread( argv[3], CV_LOAD_IMAGE_GRAYSCALE), img2;
|
||
|
if( !isWarpPerspective )
|
||
|
img2 = imread( argv[4], CV_LOAD_IMAGE_GRAYSCALE);
|
||
|
cout << ">" << endl;
|
||
|
if( img1.empty() || (!isWarpPerspective && img2.empty()) )
|
||
|
{
|
||
|
cout << "Can not read images" << endl;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
cout << endl << "< Extracting keypoints from first image..." << endl;
|
||
|
vector<KeyPoint> keypoints1;
|
||
|
detector->detect( img1, keypoints1 );
|
||
|
cout << keypoints1.size() << " >" << endl;
|
||
|
|
||
|
namedWindow(winName, 1);
|
||
|
RNG rng;
|
||
|
doIteration( img1, img2, isWarpPerspective, keypoints1, detector, descriptor, ransacReprojThreshold, &rng );
|
||
|
for(;;)
|
||
|
{
|
||
|
char c = (char)cvWaitKey(0);
|
||
|
if( c == '\x1b' ) // esc
|
||
|
{
|
||
|
cout << "Exiting ..." << endl;
|
||
|
return 0;
|
||
|
}
|
||
|
else if( isWarpPerspective )
|
||
|
{
|
||
|
doIteration( img1, img2, isWarpPerspective, keypoints1, detector, descriptor, ransacReprojThreshold, &rng );
|
||
|
}
|
||
|
}
|
||
|
waitKey(0);
|
||
|
}
|