340 lines
11 KiB
Python
340 lines
11 KiB
Python
|
#########################################################################################
|
||
|
#
|
||
|
# IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
#
|
||
|
# By downloading, copying, installing or using the software you agree to this license.
|
||
|
# If you do not agree to this license, do not download, install,
|
||
|
# copy or use the software.
|
||
|
#
|
||
|
#
|
||
|
# Intel License Agreement
|
||
|
# For Open Source Computer Vision Library
|
||
|
#
|
||
|
# Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
# Third party copyrights are property of their respective owners.
|
||
|
#
|
||
|
# Redistribution and use in source and binary forms, with or without modification,
|
||
|
# are permitted provided that the following conditions are met:
|
||
|
#
|
||
|
# * Redistribution's of source code must retain the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer.
|
||
|
#
|
||
|
# * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer in the documentation
|
||
|
# and/or other materials provided with the distribution.
|
||
|
#
|
||
|
# * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
# derived from this software without specific prior written permission.
|
||
|
#
|
||
|
# This software is provided by the copyright holders and contributors "as is" and
|
||
|
# any express or implied warranties, including, but not limited to, the implied
|
||
|
# warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
# In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
# indirect, incidental, special, exemplary, or consequential damages
|
||
|
# (including, but not limited to, procurement of substitute goods or services;
|
||
|
# loss of use, data, or profits; or business interruption) however caused
|
||
|
# and on any theory of liability, whether in contract, strict liability,
|
||
|
# or tort (including negligence or otherwise) arising in any way out of
|
||
|
# the use of this software, even if advised of the possibility of such damage.
|
||
|
#
|
||
|
#########################################################################################
|
||
|
|
||
|
|
||
|
# 2004-03-16, Mark Asbach <asbach@ient.rwth-aachen.de>
|
||
|
# Institute of Communications Engineering, RWTH Aachen University
|
||
|
# 2007-02-xx, direct interface to numpy by Vicent Mas <vmas@carabos.com>
|
||
|
# Carabos Coop. V.
|
||
|
# 2007-10-08, try/catch
|
||
|
|
||
|
"""Adaptors to interchange data with numpy and/or PIL
|
||
|
|
||
|
This module provides explicit conversion of OpenCV images/matrices to and from
|
||
|
the Python Imaging Library (PIL) and python's newest numeric library (numpy).
|
||
|
|
||
|
Currently supported image/matrix formats are:
|
||
|
- 3 x 8 bit RGB (GBR)
|
||
|
- 1 x 8 bit Grayscale
|
||
|
- 1 x 32 bit Float
|
||
|
|
||
|
In numpy, images are represented as multidimensional arrays with
|
||
|
a third dimension representing the image channels if more than one
|
||
|
channel is present.
|
||
|
"""
|
||
|
|
||
|
import cv
|
||
|
|
||
|
try:
|
||
|
import PIL.Image
|
||
|
|
||
|
###########################################################################
|
||
|
def Ipl2PIL(input):
|
||
|
"""Converts an OpenCV/IPL image to PIL the Python Imaging Library.
|
||
|
|
||
|
Supported input image formats are
|
||
|
IPL_DEPTH_8U x 1 channel
|
||
|
IPL_DEPTH_8U x 3 channels
|
||
|
IPL_DEPTH_32F x 1 channel
|
||
|
"""
|
||
|
|
||
|
if not isinstance(input, cv.CvMat):
|
||
|
raise TypeError, 'must be called with a cv.CvMat!'
|
||
|
|
||
|
#orientation
|
||
|
if input.origin == 0:
|
||
|
orientation = 1 # top left
|
||
|
elif input.origin == 1:
|
||
|
orientation = -1 # bottom left
|
||
|
else:
|
||
|
raise ValueError, 'origin must be 0 or 1!'
|
||
|
|
||
|
# mode dictionary:
|
||
|
# (channels, depth) : (source mode, dest mode, depth in byte)
|
||
|
mode_list = {
|
||
|
(1, cv.IPL_DEPTH_8U) : ("L", "L", 1),
|
||
|
(3, cv.IPL_DEPTH_8U) : ("BGR", "RGB", 3),
|
||
|
(1, cv.IPL_DEPTH_32F) : ("F", "F", 4)
|
||
|
}
|
||
|
|
||
|
key = (input.nChannels, input.depth)
|
||
|
if not mode_list.has_key(key):
|
||
|
raise ValueError, 'unknown or unsupported input mode'
|
||
|
|
||
|
modes = mode_list[key]
|
||
|
|
||
|
return PIL.Image.fromstring(
|
||
|
modes[1], # mode
|
||
|
(input.width, input.height), # size tuple
|
||
|
input.imageData, # data
|
||
|
"raw",
|
||
|
modes[0], # raw mode
|
||
|
input.widthStep, # stride
|
||
|
orientation # orientation
|
||
|
)
|
||
|
|
||
|
|
||
|
###########################################################################
|
||
|
def PIL2Ipl(input):
|
||
|
"""Converts a PIL image to the OpenCV/IPL CvMat data format.
|
||
|
|
||
|
Supported input image formats are:
|
||
|
RGB
|
||
|
L
|
||
|
F
|
||
|
"""
|
||
|
|
||
|
if not (isinstance(input, PIL.Image.Image)):
|
||
|
raise TypeError, 'Must be called with PIL.Image.Image!'
|
||
|
|
||
|
# mode dictionary:
|
||
|
# (pil_mode : (ipl_depth, ipl_channels)
|
||
|
mode_list = {
|
||
|
"RGB" : (cv.IPL_DEPTH_8U, 3),
|
||
|
"L" : (cv.IPL_DEPTH_8U, 1),
|
||
|
"F" : (cv.IPL_DEPTH_32F, 1)
|
||
|
}
|
||
|
|
||
|
if not mode_list.has_key(input.mode):
|
||
|
raise ValueError, 'unknown or unsupported input mode'
|
||
|
|
||
|
result = cv.cvCreateImage(
|
||
|
cv.cvSize(input.size[0], input.size[1]), # size
|
||
|
mode_list[input.mode][0], # depth
|
||
|
mode_list[input.mode][1] # channels
|
||
|
)
|
||
|
|
||
|
# set imageData
|
||
|
result.imageData = input.tostring()
|
||
|
return result
|
||
|
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
#############################################################################
|
||
|
#############################################################################
|
||
|
|
||
|
try:
|
||
|
|
||
|
import numpy
|
||
|
|
||
|
|
||
|
###########################################################################
|
||
|
def NumPy2Ipl(input):
|
||
|
"""Converts a numpy array to the OpenCV/IPL CvMat data format.
|
||
|
|
||
|
Supported input array layouts:
|
||
|
2 dimensions of numpy.uint8
|
||
|
3 dimensions of numpy.uint8
|
||
|
2 dimensions of numpy.float32
|
||
|
2 dimensions of numpy.float64
|
||
|
"""
|
||
|
|
||
|
if not isinstance(input, numpy.ndarray):
|
||
|
raise TypeError, 'Must be called with numpy.ndarray!'
|
||
|
|
||
|
# Check the number of dimensions of the input array
|
||
|
ndim = input.ndim
|
||
|
if not ndim in (2, 3):
|
||
|
raise ValueError, 'Only 2D-arrays and 3D-arrays are supported!'
|
||
|
|
||
|
# Get the number of channels
|
||
|
if ndim == 2:
|
||
|
channels = 1
|
||
|
else:
|
||
|
channels = input.shape[2]
|
||
|
|
||
|
# Get the image depth
|
||
|
if input.dtype == numpy.uint8:
|
||
|
depth = cv.IPL_DEPTH_8U
|
||
|
elif input.dtype == numpy.float32:
|
||
|
depth = cv.IPL_DEPTH_32F
|
||
|
elif input.dtype == numpy.float64:
|
||
|
depth = cv.IPL_DEPTH_64F
|
||
|
|
||
|
# supported modes list: [(channels, dtype), ...]
|
||
|
modes_list = [(1, numpy.uint8), (3, numpy.uint8), (1, numpy.float32), (1, numpy.float64)]
|
||
|
|
||
|
# Check if the input array layout is supported
|
||
|
if not (channels, input.dtype) in modes_list:
|
||
|
raise ValueError, 'Unknown or unsupported input mode'
|
||
|
|
||
|
result = cv.cvCreateImage(
|
||
|
cv.cvSize(input.shape[1], input.shape[0]), # size
|
||
|
depth, # depth
|
||
|
channels # channels
|
||
|
)
|
||
|
|
||
|
# set imageData
|
||
|
result.imageData = input.tostring()
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
###########################################################################
|
||
|
def Ipl2NumPy(input):
|
||
|
"""Converts an OpenCV/IPL image to a numpy array.
|
||
|
|
||
|
Supported input image formats are
|
||
|
IPL_DEPTH_8U x 1 channel
|
||
|
IPL_DEPTH_8U x 3 channels
|
||
|
IPL_DEPTH_32F x 1 channel
|
||
|
IPL_DEPTH_32F x 2 channels
|
||
|
IPL_DEPTH_32S x 1 channel
|
||
|
IPL_DEPTH_64F x 1 channel
|
||
|
IPL_DEPTH_64F x 2 channels
|
||
|
"""
|
||
|
|
||
|
if not isinstance(input, cv.CvMat):
|
||
|
raise TypeError, 'must be called with a cv.CvMat!'
|
||
|
|
||
|
# data type dictionary:
|
||
|
# (channels, depth) : numpy dtype
|
||
|
ipl2dtype = {
|
||
|
(1, cv.IPL_DEPTH_8U) : numpy.uint8,
|
||
|
(3, cv.IPL_DEPTH_8U) : numpy.uint8,
|
||
|
(1, cv.IPL_DEPTH_32F) : numpy.float32,
|
||
|
(2, cv.IPL_DEPTH_32F) : numpy.float32,
|
||
|
(1, cv.IPL_DEPTH_32S) : numpy.int32,
|
||
|
(1, cv.IPL_DEPTH_64F) : numpy.float64,
|
||
|
(2, cv.IPL_DEPTH_64F) : numpy.float64
|
||
|
}
|
||
|
|
||
|
key = (input.nChannels, input.depth)
|
||
|
if not ipl2dtype.has_key(key):
|
||
|
raise ValueError, 'unknown or unsupported input mode'
|
||
|
|
||
|
# Get the numpy array and reshape it correctly
|
||
|
# ATTENTION: flipped dimensions width/height on 2007-11-15
|
||
|
if input.nChannels == 1:
|
||
|
array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key])
|
||
|
return numpy.reshape(array_1d, (input.height, input.width))
|
||
|
elif input.nChannels == 2:
|
||
|
array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key])
|
||
|
return numpy.reshape(array_1d, (input.height, input.width, 2))
|
||
|
elif input.nChannels == 3:
|
||
|
# Change the order of channels from BGR to RGB
|
||
|
rgb = cv.cvCreateImage(cv.cvSize(input.width, input.height), input.depth, 3)
|
||
|
cv.cvCvtColor(input, rgb, cv.CV_BGR2RGB)
|
||
|
array_1d = numpy.fromstring(rgb.imageData, dtype=ipl2dtype[key])
|
||
|
return numpy.reshape(array_1d, (input.height, input.width, 3))
|
||
|
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
###########################################################################
|
||
|
###########################################################################
|
||
|
|
||
|
|
||
|
try:
|
||
|
|
||
|
import PIL.Image
|
||
|
import numpy
|
||
|
|
||
|
###########################################################################
|
||
|
def PIL2NumPy(input):
|
||
|
"""THIS METHOD IS DEPRECATED
|
||
|
|
||
|
Converts a PIL image to a numpy array.
|
||
|
|
||
|
Supported input image formats are:
|
||
|
RGB
|
||
|
L
|
||
|
F
|
||
|
"""
|
||
|
|
||
|
if not (isinstance(input, PIL.Image.Image)):
|
||
|
raise TypeError, 'Must be called with PIL.Image.Image!'
|
||
|
|
||
|
# modes dictionary:
|
||
|
# pil_mode : numpy dtype
|
||
|
modes_map = {
|
||
|
"RGB" : numpy.uint8,
|
||
|
"L" : numpy.uint8,
|
||
|
"F" : numpy.float32
|
||
|
}
|
||
|
|
||
|
if not modes_map.has_key(input.mode):
|
||
|
raise ValueError, 'Unknown or unsupported input mode!. Supported modes are RGB, L and F.'
|
||
|
|
||
|
result_ro = numpy.asarray(input, dtype=modes_map[input.mode]) # Read-only array
|
||
|
return result_ro.copy() # Return a writeable array
|
||
|
|
||
|
|
||
|
###########################################################################
|
||
|
def NumPy2PIL(input):
|
||
|
"""THIS METHOD IS DEPRECATED
|
||
|
|
||
|
Converts a numpy array to a PIL image.
|
||
|
|
||
|
Supported input array layouts:
|
||
|
2 dimensions of numpy.uint8
|
||
|
3 dimensions of numpy.uint8
|
||
|
2 dimensions of numpy.float32
|
||
|
"""
|
||
|
|
||
|
if not isinstance(input, numpy.ndarray):
|
||
|
raise TypeError, 'Must be called with numpy.ndarray!'
|
||
|
|
||
|
# Check the number of dimensions of the input array
|
||
|
ndim = input.ndim
|
||
|
if not ndim in (2, 3):
|
||
|
raise ValueError, 'Only 2D-arrays and 3D-arrays are supported!'
|
||
|
|
||
|
if ndim == 2:
|
||
|
channels = 1
|
||
|
else:
|
||
|
channels = input.shape[2]
|
||
|
|
||
|
# supported modes list: [(channels, dtype), ...]
|
||
|
modes_list = [(1, numpy.uint8), (3, numpy.uint8), (1, numpy.float32)]
|
||
|
|
||
|
mode = (channels, input.dtype)
|
||
|
if not mode in modes_list:
|
||
|
raise ValueError, 'Unknown or unsupported input mode'
|
||
|
|
||
|
return PIL.Image.fromarray(input)
|
||
|
|
||
|
except ImportError:
|
||
|
pass
|