2015-03-25 03:11:44 +09:00
/***********************************************************************
* Software License Agreement ( BSD License )
*
* Copyright ( c ) 2015 Ippei Ito . All rights reserved .
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions
* are met :
*
* 1. Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* 2. Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in the
* documentation and / or other materials provided with the distribution .
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ` ` AS IS ' ' AND ANY EXPRESS OR
* IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED .
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT , INDIRECT ,
* INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES ( INCLUDING , BUT
* NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE ,
* DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT
* ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2015-03-25 00:08:47 +09:00
/*
2015-03-25 03:11:44 +09:00
For OpenCV2 .4 / OpenCV3 .0
2015-03-25 00:08:47 +09:00
Test for Pull Request # 3829
https : //github.com/Itseez/opencv/pull/3829
This test code creates brute force matcher for accuracy of reference , and the test target matcher .
Then , add ( ) and train ( ) transformed query image descriptors , and some outlier images descriptors to both matchers .
Then , compared with the query image by match ( ) and findHomography ( ) to detect outlier and calculate accuracy .
And each drawMatches ( ) images are saved , if SAVE_DRAW_MATCHES_IMAGES is true .
Finally , compare accuracies between the brute force matcher and the test target matcher .
The lsh algorithm uses std : : random_shuffle in lsh_index . h to make the random indexes table .
So , in relation to default random seed value of the execution environment or by using " srand(time(0)) function " ,
the match time and accuracy of the match results are different , each time the code ran .
And the match time becomes late in relation to the number of the hash collision times .
*/
# include "test_precomp.hpp"
# include "opencv2/ts.hpp" // for FilePath::CreateFolder()
# include <time.h> // for time()
// If defined, the match time and accuracy of the match results are a little different, each time the code ran.
# define INIT_RANDOM_SEED
// If defined, some outlier images descriptors add() the matcher.
# define TRAIN_WITH_OUTLIER_IMAGES
// If true, save drawMatches() images.
# define SAVE_DRAW_MATCHES_IMAGES false
// if true, verbose output
# define SHOW_DEBUG_LOG true
# if CV_MAJOR_VERSION==2
# define OrbCreate new ORB(4000)
# elif CV_MAJOR_VERSION==3
# define OrbCreate ORB::create(4000)
# define AKazeCreate AKAZE::create()
# endif
using namespace cv ;
using namespace std ;
int testno_for_make_filename = 0 ;
// --------------------------------------------------------------------------------------
// Parameter class to transform query image
// --------------------------------------------------------------------------------------
class testparam
{
public :
string transname ;
void ( * transfunc ) ( float , const Mat & , Mat & ) ;
float from , to , step ;
testparam ( string _transname , void ( * _transfunc ) ( float , const Mat & , Mat & ) , float _from , float _to , float _step ) :
transname ( _transname ) ,
transfunc ( _transfunc ) ,
from ( _from ) ,
to ( _to ) ,
step ( _step )
{ }
} ;
// --------------------------------------------------------------------------------------
// from matching_to_many_images.cpp
// --------------------------------------------------------------------------------------
int maskMatchesByTrainImgIdx ( const vector < DMatch > & matches , int trainImgIdx , vector < char > & mask )
{
int matchcnt = 0 ;
mask . resize ( matches . size ( ) ) ;
fill ( mask . begin ( ) , mask . end ( ) , 0 ) ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
if ( matches [ i ] . imgIdx = = trainImgIdx )
{
mask [ i ] = 1 ;
matchcnt + + ;
}
}
return matchcnt ;
}
int calcHomographyAndInlierCount ( const vector < KeyPoint > & query_kp , const vector < KeyPoint > & train_kp , const vector < DMatch > & match , vector < char > & mask , Mat & homography )
{
// make query and current train image keypoint pairs
std : : vector < cv : : Point2f > srcPoints , dstPoints ;
for ( unsigned int i = 0 ; i < match . size ( ) ; + + i )
{
if ( mask [ i ] ! = 0 ) // is current train image ?
{
srcPoints . push_back ( query_kp [ match [ i ] . queryIdx ] . pt ) ;
dstPoints . push_back ( train_kp [ match [ i ] . trainIdx ] . pt ) ;
}
}
// calc homography
vector < uchar > inlierMask ;
homography = findHomography ( srcPoints , dstPoints , RANSAC , 3.0 , inlierMask ) ;
// update outlier mask
int j = 0 ;
for ( unsigned int i = 0 ; i < match . size ( ) ; + + i )
{
if ( mask [ i ] ! = 0 ) // is current train image ?
{
if ( inlierMask . size ( ) = = 0 | | inlierMask [ j ] = = 0 ) // is outlier ?
{
mask [ i ] = 0 ;
}
j + + ;
}
}
// count inlier
int inlierCnt = 0 ;
for ( unsigned int i = 0 ; i < mask . size ( ) ; + + i )
{
if ( mask [ i ] ! = 0 )
{
inlierCnt + + ;
}
}
return inlierCnt ;
}
void drawDetectedRectangle ( Mat & imgResult , const Mat & homography , const Mat & imgQuery )
{
std : : vector < Point2f > query_corners ( 4 ) ;
query_corners [ 0 ] = Point ( 0 , 0 ) ;
query_corners [ 1 ] = Point ( imgQuery . cols , 0 ) ;
query_corners [ 2 ] = Point ( imgQuery . cols , imgQuery . rows ) ;
query_corners [ 3 ] = Point ( 0 , imgQuery . rows ) ;
std : : vector < Point2f > train_corners ( 4 ) ;
perspectiveTransform ( query_corners , train_corners , homography ) ;
line ( imgResult , train_corners [ 0 ] + query_corners [ 1 ] , train_corners [ 1 ] + query_corners [ 1 ] , Scalar ( 0 , 255 , 0 ) , 4 ) ;
line ( imgResult , train_corners [ 1 ] + query_corners [ 1 ] , train_corners [ 2 ] + query_corners [ 1 ] , Scalar ( 0 , 255 , 0 ) , 4 ) ;
line ( imgResult , train_corners [ 2 ] + query_corners [ 1 ] , train_corners [ 3 ] + query_corners [ 1 ] , Scalar ( 0 , 255 , 0 ) , 4 ) ;
line ( imgResult , train_corners [ 3 ] + query_corners [ 1 ] , train_corners [ 0 ] + query_corners [ 1 ] , Scalar ( 0 , 255 , 0 ) , 4 ) ;
}
// --------------------------------------------------------------------------------------
// transform query image, extract&compute, train, matching and save result image function
// --------------------------------------------------------------------------------------
typedef struct tagTrainInfo
{
int traindesccnt ;
double traintime ;
double matchtime ;
double accuracy ;
} TrainInfo ;
TrainInfo transImgAndTrain (
Feature2D * fe ,
DescriptorMatcher * matcher ,
const string & matchername ,
const Mat & imgQuery , const vector < KeyPoint > & query_kp , const Mat & query_desc ,
const vector < Mat > & imgOutliers , const vector < vector < KeyPoint > > & outliers_kp , const vector < Mat > & outliers_desc , const int totalOutlierDescCnt ,
const float t , const testparam & tp ,
const int testno , const bool bVerboseOutput , const bool bSaveDrawMatches )
{
TrainInfo ti ;
// transform query image
Mat imgTransform ;
( tp . transfunc ) ( t , imgQuery , imgTransform ) ;
// extract kp and compute desc from transformed query image
vector < KeyPoint > trans_query_kp ;
Mat trans_query_desc ;
# if CV_MAJOR_VERSION==2
( * fe ) ( imgTransform , Mat ( ) , trans_query_kp , trans_query_desc ) ;
# elif CV_MAJOR_VERSION==3
fe - > detectAndCompute ( imgTransform , Mat ( ) , trans_query_kp , trans_query_desc ) ;
# endif
// add&train transformed query desc and outlier desc
matcher - > clear ( ) ;
matcher - > add ( vector < Mat > ( 1 , trans_query_desc ) ) ;
double s = ( double ) getTickCount ( ) ;
matcher - > train ( ) ;
ti . traintime = 1000.0 * ( ( double ) getTickCount ( ) - s ) / getTickFrequency ( ) ;
ti . traindesccnt = trans_query_desc . rows ;
# if defined(TRAIN_WITH_OUTLIER_IMAGES)
// same as matcher->add(outliers_desc); matcher->train();
for ( unsigned int i = 0 ; i < outliers_desc . size ( ) ; + + i )
{
matcher - > add ( vector < Mat > ( 1 , outliers_desc [ i ] ) ) ;
s = ( double ) getTickCount ( ) ;
matcher - > train ( ) ;
ti . traintime + = 1000.0 * ( ( double ) getTickCount ( ) - s ) / getTickFrequency ( ) ;
}
ti . traindesccnt + = totalOutlierDescCnt ;
# endif
// matching
vector < DMatch > match ;
s = ( double ) getTickCount ( ) ;
matcher - > match ( query_desc , match ) ;
ti . matchtime = 1000.0 * ( ( double ) getTickCount ( ) - s ) / getTickFrequency ( ) ;
// prepare a directory and variables for save matching images
vector < char > mask ;
Mat imgResult ;
const char resultDir [ ] = " result " ;
if ( bSaveDrawMatches )
{
testing : : internal : : FilePath fp = testing : : internal : : FilePath ( resultDir ) ;
fp . CreateFolder ( ) ;
}
char buff [ 2048 ] ;
int matchcnt ;
// save query vs transformed query matching image with detected rectangle
matchcnt = maskMatchesByTrainImgIdx ( match , ( int ) 0 , mask ) ;
// calc homography and inlier
Mat homography ;
int inlierCnt = calcHomographyAndInlierCount ( query_kp , trans_query_kp , match , mask , homography ) ;
ti . accuracy = ( double ) inlierCnt / ( double ) mask . size ( ) * 100.0 ;
drawMatches ( imgQuery , query_kp , imgTransform , trans_query_kp , match , imgResult , Scalar : : all ( - 1 ) , Scalar : : all ( 128 ) , mask , DrawMatchesFlags : : DRAW_RICH_KEYPOINTS ) ;
if ( inlierCnt )
{
// draw detected rectangle
drawDetectedRectangle ( imgResult , homography , imgQuery ) ;
}
// draw status
sprintf ( buff , " %s accuracy:%-3.2f%% %d descriptors training time:%-3.2fms matching :%-3.2fms " , matchername . c_str ( ) , ti . accuracy , ti . traindesccnt , ti . traintime , ti . matchtime ) ;
putText ( imgResult , buff , Point ( 0 , 12 ) , FONT_HERSHEY_PLAIN , 0.8 , Scalar ( 0. , 0. , 255. ) ) ;
sprintf ( buff , " %s/res%03d_%s_%s%.1f_inlier.png " , resultDir , testno , matchername . c_str ( ) , tp . transname . c_str ( ) , t ) ;
if ( bSaveDrawMatches & & ! imwrite ( buff , imgResult ) ) cout < < " Image " < < buff < < " can not be saved (may be because directory " < < resultDir < < " does not exist). " < < endl ;
# if defined(TRAIN_WITH_OUTLIER_IMAGES)
// save query vs outlier matching image(s)
for ( unsigned int i = 0 ; i < imgOutliers . size ( ) ; + + i )
{
matchcnt = maskMatchesByTrainImgIdx ( match , ( int ) i + 1 , mask ) ;
drawMatches ( imgQuery , query_kp , imgOutliers [ i ] , outliers_kp [ i ] , match , imgResult , Scalar : : all ( - 1 ) , Scalar : : all ( 128 ) , mask ) ; // , DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
sprintf ( buff , " query_num:%d train_num:%d matched:%d %d descriptors training time:%-3.2fms matching :%-3.2fms " , ( int ) query_kp . size ( ) , ( int ) outliers_kp [ i ] . size ( ) , matchcnt , ti . traindesccnt , ti . traintime , ti . matchtime ) ;
putText ( imgResult , buff , Point ( 0 , 12 ) , FONT_HERSHEY_PLAIN , 0.8 , Scalar ( 0. , 0. , 255. ) ) ;
sprintf ( buff , " %s/res%03d_%s_%s%.1f_outlier%02d.png " , resultDir , testno , matchername . c_str ( ) , tp . transname . c_str ( ) , t , i ) ;
if ( bSaveDrawMatches & & ! imwrite ( buff , imgResult ) ) cout < < " Image " < < buff < < " can not be saved (may be because directory " < < resultDir < < " does not exist). " < < endl ;
}
# endif
if ( bVerboseOutput )
{
cout < < tp . transname < < " image matching accuracy: " < < ti . accuracy < < " % " < < ti . traindesccnt < < " train: " < < ti . traintime < < " ms match: " < < ti . matchtime < < " ms " < < endl ;
}
return ti ;
}
// --------------------------------------------------------------------------------------
// Main Test Class
// --------------------------------------------------------------------------------------
class CV_FeatureDetectorMatcherBaseTest : public cvtest : : BaseTest
{
private :
Ptr < DescriptorMatcher > bfmatcher ; // brute force matcher for accuracy of reference
Ptr < DescriptorMatcher > flmatcher ; // flann matcher to test
Ptr < Feature2D > fe ; // feature detector extractor
Mat imgQuery ; // query image
vector < Mat > imgOutliers ; // outlier image
vector < KeyPoint > query_kp ; // query key points detect from imgQuery
Mat query_desc ; // query descriptors extract from imgQuery
vector < vector < KeyPoint > > outliers_kp ;
vector < Mat > outliers_desc ;
int totalOutlierDescCnt ;
string flmatchername ;
testparam tp ;
double target_accuracy_margin_from_bfmatcher ;
public :
//
// constructor
//
CV_FeatureDetectorMatcherBaseTest ( testparam _tp , double _accuracy_margin , Ptr < Feature2D > _fe , DescriptorMatcher * _flmatcher , string _flmatchername , int norm_type_for_bfmatcher ) :
tp ( _tp ) ,
fe ( _fe ) ,
flmatcher ( _flmatcher ) ,
flmatchername ( _flmatchername ) ,
target_accuracy_margin_from_bfmatcher ( _accuracy_margin )
{
# if defined(INIT_RANDOM_SEED)
// from test/test_eigen.cpp
srand ( ( unsigned int ) time ( 0 ) ) ;
# endif
// create brute force matcher for accuracy of reference
bfmatcher = makePtr < BFMatcher > ( norm_type_for_bfmatcher ) ;
}
//
// Main Test method
//
virtual void run ( int )
{
// load query image
string strQueryFile = string ( cvtest : : TS : : ptr ( ) - > get_data_path ( ) ) + " shared/lena.png " ;
imgQuery = imread ( strQueryFile , 0 ) ;
if ( imgQuery . empty ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Image %s can not be read. \n " , strQueryFile . c_str ( ) ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
// load outlier images
char * outliers [ ] = { ( char * ) " baboon.png " , ( char * ) " fruits.png " , ( char * ) " airplane.png " } ;
for ( unsigned int i = 0 ; i < sizeof ( outliers ) / sizeof ( char * ) ; i + + )
{
string strOutlierFile = string ( cvtest : : TS : : ptr ( ) - > get_data_path ( ) ) + " shared/ " + outliers [ i ] ;
Mat imgOutlier = imread ( strOutlierFile , 0 ) ;
if ( imgQuery . empty ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Image %s can not be read. \n " , strOutlierFile . c_str ( ) ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
imgOutliers . push_back ( imgOutlier ) ;
}
// extract and compute keypoints and descriptors from query image
# if CV_MAJOR_VERSION==2
( * fe ) ( imgQuery , Mat ( ) , query_kp , query_desc ) ;
# elif CV_MAJOR_VERSION==3
fe - > detectAndCompute ( imgQuery , Mat ( ) , query_kp , query_desc ) ;
# endif
// extract and compute keypoints and descriptors from outlier images
fe - > detect ( imgOutliers , outliers_kp ) ;
( ( DescriptorExtractor * ) fe ) - > compute ( imgOutliers , outliers_kp , outliers_desc ) ;
totalOutlierDescCnt = 0 ;
for ( unsigned int i = 0 ; i < outliers_desc . size ( ) ; + + i ) totalOutlierDescCnt + = outliers_desc [ i ] . rows ;
if ( SHOW_DEBUG_LOG )
{
cout < < query_kp . size ( ) < < " keypoints extracted from query image. " < < endl ;
# if defined(TRAIN_WITH_OUTLIER_IMAGES)
cout < < totalOutlierDescCnt < < " keypoints extracted from outlier image(s). " < < endl ;
# endif
}
// compute brute force matcher accuracy for reference
double totalTrainTime = 0. ;
double totalMatchTime = 0. ;
double totalAccuracy = 0. ;
int cnt = 0 ;
for ( float t = tp . from ; t < = tp . to ; t + = tp . step , + + testno_for_make_filename , + + cnt )
{
if ( SHOW_DEBUG_LOG ) cout < < " Test No. " < < testno_for_make_filename < < " BFMatcher " < < t ;
TrainInfo ti = transImgAndTrain ( fe , bfmatcher , " BFMatcher " ,
imgQuery , query_kp , query_desc ,
imgOutliers , outliers_kp , outliers_desc ,
totalOutlierDescCnt ,
t , tp , testno_for_make_filename , SHOW_DEBUG_LOG , SAVE_DRAW_MATCHES_IMAGES ) ;
totalTrainTime + = ti . traintime ;
totalMatchTime + = ti . matchtime ;
totalAccuracy + = ti . accuracy ;
}
double bf_average_accuracy = totalAccuracy / cnt ;
if ( SHOW_DEBUG_LOG )
{
cout < < " total training time: " < < totalTrainTime < < " ms " < < endl ;
cout < < " total matching time: " < < totalMatchTime < < " ms " < < endl ;
cout < < " average accuracy: " < < bf_average_accuracy < < " % " < < endl ;
}
// test the target matcher
totalTrainTime = 0. ;
totalMatchTime = 0. ;
totalAccuracy = 0. ;
cnt = 0 ;
for ( float t = tp . from ; t < = tp . to ; t + = tp . step , + + testno_for_make_filename , + + cnt )
{
if ( SHOW_DEBUG_LOG ) cout < < " Test No. " < < testno_for_make_filename < < " " < < flmatchername < < " " < < t ;
TrainInfo ti = transImgAndTrain ( fe , flmatcher , flmatchername ,
imgQuery , query_kp , query_desc ,
imgOutliers , outliers_kp , outliers_desc ,
totalOutlierDescCnt ,
t , tp , testno_for_make_filename , SHOW_DEBUG_LOG , SAVE_DRAW_MATCHES_IMAGES ) ;
totalTrainTime + = ti . traintime ;
totalMatchTime + = ti . matchtime ;
totalAccuracy + = ti . accuracy ;
}
double average_accuracy = totalAccuracy / cnt ;
double target_average_accuracy = bf_average_accuracy * target_accuracy_margin_from_bfmatcher ;
if ( SHOW_DEBUG_LOG )
{
cout < < " total training time: " < < totalTrainTime < < " ms " < < endl ;
cout < < " total matching time: " < < totalMatchTime < < " ms " < < endl ;
cout < < " average accuracy: " < < average_accuracy < < " % " < < endl ;
cout < < " threshold of the target matcher average accuracy as error : " < < target_average_accuracy < < " % " < < endl ;
cout < < " accuracy degraded " < < ( 100.0 - ( average_accuracy / bf_average_accuracy * 100.0 ) ) < < " % from BFMatcher.(lower percentage is better) " < < endl ;
}
// compare accuracies between the brute force matcher and the test target matcher
if ( average_accuracy < target_average_accuracy )
{
2015-03-25 03:11:44 +09:00
ts - > printf ( cvtest : : TS : : LOG , " Bad average accuracy %f < %f while test %s %s query \n " , average_accuracy , target_average_accuracy , flmatchername . c_str ( ) , tp . transname . c_str ( ) ) ;
2015-03-25 00:08:47 +09:00
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_BAD_ACCURACY ) ;
}
return ;
}
} ;
// --------------------------------------------------------------------------------------
// Transform Functions
// --------------------------------------------------------------------------------------
static void rotate ( float deg , const Mat & src , Mat & dst )
{
warpAffine ( src , dst , getRotationMatrix2D ( Point2f ( src . cols / 2.0f , src . rows / 2.0f ) , deg , 1 ) , src . size ( ) , INTER_CUBIC ) ;
}
static void scale ( float scale , const Mat & src , Mat & dst )
{
resize ( src , dst , Size ( ( int ) ( src . cols * scale ) , ( int ) ( src . rows * scale ) ) , INTER_AREA ) ;
}
static void blur ( float k , const Mat & src , Mat & dst )
{
GaussianBlur ( src , dst , Size ( ( int ) k , ( int ) k ) , 0 ) ;
}
// --------------------------------------------------------------------------------------
// Tests Registrations
// --------------------------------------------------------------------------------------
# define SHORT_LSH_KEY_ACCURACY_MARGIN 0.72 // The margin for FlannBasedMatcher. 28% degraded from BFMatcher(Actually, about 10..24% measured.lower percentage is better.) for lsh key size=16.
# define MIDDLE_LSH_KEY_ACCURACY_MARGIN 0.72 // The margin for FlannBasedMatcher. 28% degraded from BFMatcher(Actually, about 7..24% measured.lower percentage is better.) for lsh key size=24.
# define LONG_LSH_KEY_ACCURACY_MARGIN 0.90 // The margin for FlannBasedMatcher. 10% degraded from BFMatcher(Actually, about -29...7% measured.lower percentage is better.) for lsh key size=31.
TEST ( BlurredQueryFlannBasedLshShortKeyMatcherAdditionalTrainTest , accuracy )
{
testparam tp ( " blurred " , blur , 1.0f , 11.0f , 2.0f ) ;
CV_FeatureDetectorMatcherBaseTest test ( tp , SHORT_LSH_KEY_ACCURACY_MARGIN , OrbCreate , new FlannBasedMatcher ( makePtr < flann : : LshIndexParams > ( 1 , 16 , 2 ) ) , " FlannLsh(1, 16, 2) " , NORM_HAMMING ) ;
test . safe_run ( ) ;
}
TEST ( BlurredQueryFlannBasedLshMiddleKeyMatcherAdditionalTrainTest , accuracy )
{
testparam tp ( " blurred " , blur , 1.0f , 11.0f , 2.0f ) ;
CV_FeatureDetectorMatcherBaseTest test ( tp , MIDDLE_LSH_KEY_ACCURACY_MARGIN , OrbCreate , new FlannBasedMatcher ( makePtr < flann : : LshIndexParams > ( 1 , 24 , 2 ) ) , " FlannLsh(1, 24, 2) " , NORM_HAMMING ) ;
test . safe_run ( ) ;
}
TEST ( BlurredQueryFlannBasedLshLongKeyMatcherAdditionalTrainTest , accuracy )
{
testparam tp ( " blurred " , blur , 1.0f , 11.0f , 2.0f ) ;
CV_FeatureDetectorMatcherBaseTest test ( tp , LONG_LSH_KEY_ACCURACY_MARGIN , OrbCreate , new FlannBasedMatcher ( makePtr < flann : : LshIndexParams > ( 1 , 31 , 2 ) ) , " FlannLsh(1, 31, 2) " , NORM_HAMMING ) ;
test . safe_run ( ) ;
}
TEST ( ScaledQueryFlannBasedLshShortKeyMatcherAdditionalTrainTest , accuracy )
{
testparam tp ( " scaled " , scale , 0.5f , 1.5f , 0.1f ) ;
CV_FeatureDetectorMatcherBaseTest test ( tp , SHORT_LSH_KEY_ACCURACY_MARGIN , OrbCreate , new FlannBasedMatcher ( makePtr < flann : : LshIndexParams > ( 1 , 16 , 2 ) ) , " FlannLsh(1, 16, 2) " , NORM_HAMMING ) ;
test . safe_run ( ) ;
}
TEST ( ScaledQueryFlannBasedLshMiddleKeyMatcherAdditionalTrainTest , accuracy )
{
testparam tp ( " scaled " , scale , 0.5f , 1.5f , 0.1f ) ;
CV_FeatureDetectorMatcherBaseTest test ( tp , MIDDLE_LSH_KEY_ACCURACY_MARGIN , OrbCreate , new FlannBasedMatcher ( makePtr < flann : : LshIndexParams > ( 1 , 24 , 2 ) ) , " FlannLsh(1, 24, 2) " , NORM_HAMMING ) ;
test . safe_run ( ) ;
}
TEST ( ScaledQueryFlannBasedLshLongKeyMatcherAdditionalTrainTest , accuracy )
{
testparam tp ( " scaled " , scale , 0.5f , 1.5f , 0.1f ) ;
CV_FeatureDetectorMatcherBaseTest test ( tp , LONG_LSH_KEY_ACCURACY_MARGIN , OrbCreate , new FlannBasedMatcher ( makePtr < flann : : LshIndexParams > ( 1 , 31 , 2 ) ) , " FlannLsh(1, 31, 2) " , NORM_HAMMING ) ;
test . safe_run ( ) ;
}
TEST ( RotatedQueryFlannBasedLshShortKeyMatcherAdditionalTrainTest , accuracy )
{
testparam tp ( " rotated " , rotate , 0.0f , 359.0f , 30.0f ) ;
CV_FeatureDetectorMatcherBaseTest test ( tp , SHORT_LSH_KEY_ACCURACY_MARGIN , OrbCreate , new FlannBasedMatcher ( makePtr < flann : : LshIndexParams > ( 1 , 16 , 2 ) ) , " FlannLsh(1, 16, 2) " , NORM_HAMMING ) ;
test . safe_run ( ) ;
}
TEST ( RotatedQueryFlannBasedLshMiddleKeyMatcherAdditionalTrainTest , accuracy )
{
testparam tp ( " rotated " , rotate , 0.0f , 359.0f , 30.0f ) ;
CV_FeatureDetectorMatcherBaseTest test ( tp , MIDDLE_LSH_KEY_ACCURACY_MARGIN , OrbCreate , new FlannBasedMatcher ( makePtr < flann : : LshIndexParams > ( 1 , 24 , 2 ) ) , " FlannLsh(1, 24, 2) " , NORM_HAMMING ) ;
test . safe_run ( ) ;
}
TEST ( RotatedQueryFlannBasedLshLongKeyMatcherAdditionalTrainTest , accuracy )
{
testparam tp ( " rotated " , rotate , 0.0f , 359.0f , 30.0f ) ;
CV_FeatureDetectorMatcherBaseTest test ( tp , LONG_LSH_KEY_ACCURACY_MARGIN , OrbCreate , new FlannBasedMatcher ( makePtr < flann : : LshIndexParams > ( 1 , 31 , 2 ) ) , " FlannLsh(1, 31, 2) " , NORM_HAMMING ) ;
test . safe_run ( ) ;
}