825 lines
31 KiB
C++
825 lines
31 KiB
C++
|
#include <opencv2/calib3d.hpp>
|
||
|
#include "linalg.hpp"
|
||
|
#include "cvCalibrationFork.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
|
||
|
static void subMatrix(const cv::Mat& src, cv::Mat& dst, const std::vector<uchar>& cols,
|
||
|
const std::vector<uchar>& rows);
|
||
|
static const char* cvDistCoeffErr = "Distortion coefficients must be 1x4, 4x1, 1x5, 5x1, 1x8, 8x1, 1x12, 12x1, 1x14 or 14x1 floating-point vector";
|
||
|
|
||
|
static void cvEvaluateJtJ2(CvMat* _JtJ,
|
||
|
const CvMat* camera_matrix,
|
||
|
const CvMat* distortion_coeffs,
|
||
|
const CvMat* object_points,
|
||
|
const CvMat* param,
|
||
|
const CvMat* npoints,
|
||
|
int flags, int NINTRINSIC, double aspectRatio)
|
||
|
{
|
||
|
int i, pos, ni, total = 0, npstep = 0, maxPoints = 0;
|
||
|
|
||
|
npstep = npoints->rows == 1 ? 1 : npoints->step/CV_ELEM_SIZE(npoints->type);
|
||
|
int nimages = npoints->rows*npoints->cols;
|
||
|
for( i = 0; i < nimages; i++ )
|
||
|
{
|
||
|
ni = npoints->data.i[i*npstep];
|
||
|
if( ni < 4 )
|
||
|
{
|
||
|
CV_Error_( CV_StsOutOfRange, ("The number of points in the view #%d is < 4", i));
|
||
|
}
|
||
|
maxPoints = MAX( maxPoints, ni );
|
||
|
total += ni;
|
||
|
}
|
||
|
|
||
|
Mat _Ji( maxPoints*2, NINTRINSIC, CV_64FC1, Scalar(0));
|
||
|
Mat _Je( maxPoints*2, 6, CV_64FC1 );
|
||
|
Mat _err( maxPoints*2, 1, CV_64FC1 );
|
||
|
Mat _m( 1, total, CV_64FC2 );
|
||
|
const Mat matM = cvarrToMat(object_points);
|
||
|
|
||
|
cvZero(_JtJ);
|
||
|
for(i = 0, pos = 0; i < nimages; i++, pos += ni )
|
||
|
{
|
||
|
CvMat _ri, _ti;
|
||
|
ni = npoints->data.i[i*npstep];
|
||
|
|
||
|
cvGetRows( param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 );
|
||
|
cvGetRows( param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 );
|
||
|
|
||
|
CvMat _Mi(matM.colRange(pos, pos + ni));
|
||
|
CvMat _mi(_m.colRange(pos, pos + ni));
|
||
|
|
||
|
_Je.resize(ni*2); _Ji.resize(ni*2); _err.resize(ni*2);
|
||
|
CvMat _dpdr(_Je.colRange(0, 3));
|
||
|
CvMat _dpdt(_Je.colRange(3, 6));
|
||
|
CvMat _dpdf(_Ji.colRange(0, 2));
|
||
|
CvMat _dpdc(_Ji.colRange(2, 4));
|
||
|
CvMat _dpdk(_Ji.colRange(4, NINTRINSIC));
|
||
|
CvMat _mp(_err.reshape(2, 1));
|
||
|
|
||
|
cvProjectPoints2( &_Mi, &_ri, &_ti, camera_matrix, distortion_coeffs, &_mp, &_dpdr, &_dpdt,
|
||
|
(flags & CALIB_FIX_FOCAL_LENGTH) ? 0 : &_dpdf,
|
||
|
(flags & CALIB_FIX_PRINCIPAL_POINT) ? 0 : &_dpdc, &_dpdk,
|
||
|
(flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio : 0);
|
||
|
cvSub( &_mp, &_mi, &_mp );
|
||
|
Mat JtJ(cvarrToMat(_JtJ));
|
||
|
// see HZ: (A6.14) for details on the structure of the Jacobian
|
||
|
JtJ(Rect(0, 0, NINTRINSIC, NINTRINSIC)) += _Ji.t() * _Ji;
|
||
|
JtJ(Rect(NINTRINSIC + i * 6, NINTRINSIC + i * 6, 6, 6)) = _Je.t() * _Je;
|
||
|
JtJ(Rect(NINTRINSIC + i * 6, 0, 6, NINTRINSIC)) = _Ji.t() * _Je;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double cvfork::cvCalibrateCamera2( const CvMat* objectPoints,
|
||
|
const CvMat* imagePoints, const CvMat* npoints,
|
||
|
CvSize imageSize, CvMat* cameraMatrix, CvMat* distCoeffs,
|
||
|
CvMat* rvecs, CvMat* tvecs, CvMat* stdDevs, CvMat* perViewErrors, int flags, CvTermCriteria termCrit )
|
||
|
{
|
||
|
{
|
||
|
const int NINTRINSIC = CV_CALIB_NINTRINSIC;
|
||
|
double reprojErr = 0;
|
||
|
|
||
|
Matx33d A;
|
||
|
double k[14] = {0};
|
||
|
CvMat matA = cvMat(3, 3, CV_64F, A.val), _k;
|
||
|
int i, nimages, maxPoints = 0, ni = 0, pos, total = 0, nparams, npstep, cn;
|
||
|
double aspectRatio = 0.;
|
||
|
|
||
|
// 0. check the parameters & allocate buffers
|
||
|
if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(imagePoints) ||
|
||
|
!CV_IS_MAT(npoints) || !CV_IS_MAT(cameraMatrix) || !CV_IS_MAT(distCoeffs) )
|
||
|
CV_Error( CV_StsBadArg, "One of required vector arguments is not a valid matrix" );
|
||
|
|
||
|
if( imageSize.width <= 0 || imageSize.height <= 0 )
|
||
|
CV_Error( CV_StsOutOfRange, "image width and height must be positive" );
|
||
|
|
||
|
if( CV_MAT_TYPE(npoints->type) != CV_32SC1 ||
|
||
|
(npoints->rows != 1 && npoints->cols != 1) )
|
||
|
CV_Error( CV_StsUnsupportedFormat,
|
||
|
"the array of point counters must be 1-dimensional integer vector" );
|
||
|
if(flags & CV_CALIB_TILTED_MODEL)
|
||
|
{
|
||
|
//when the tilted sensor model is used the distortion coefficients matrix must have 14 parameters
|
||
|
if (distCoeffs->cols*distCoeffs->rows != 14)
|
||
|
CV_Error( CV_StsBadArg, "The tilted sensor model must have 14 parameters in the distortion matrix" );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//when the thin prism model is used the distortion coefficients matrix must have 12 parameters
|
||
|
if(flags & CV_CALIB_THIN_PRISM_MODEL)
|
||
|
if (distCoeffs->cols*distCoeffs->rows != 12)
|
||
|
CV_Error( CV_StsBadArg, "Thin prism model must have 12 parameters in the distortion matrix" );
|
||
|
}
|
||
|
|
||
|
nimages = npoints->rows*npoints->cols;
|
||
|
npstep = npoints->rows == 1 ? 1 : npoints->step/CV_ELEM_SIZE(npoints->type);
|
||
|
|
||
|
if( rvecs )
|
||
|
{
|
||
|
cn = CV_MAT_CN(rvecs->type);
|
||
|
if( !CV_IS_MAT(rvecs) ||
|
||
|
(CV_MAT_DEPTH(rvecs->type) != CV_32F && CV_MAT_DEPTH(rvecs->type) != CV_64F) ||
|
||
|
((rvecs->rows != nimages || (rvecs->cols*cn != 3 && rvecs->cols*cn != 9)) &&
|
||
|
(rvecs->rows != 1 || rvecs->cols != nimages || cn != 3)) )
|
||
|
CV_Error( CV_StsBadArg, "the output array of rotation vectors must be 3-channel "
|
||
|
"1xn or nx1 array or 1-channel nx3 or nx9 array, where n is the number of views" );
|
||
|
}
|
||
|
|
||
|
if( tvecs )
|
||
|
{
|
||
|
cn = CV_MAT_CN(tvecs->type);
|
||
|
if( !CV_IS_MAT(tvecs) ||
|
||
|
(CV_MAT_DEPTH(tvecs->type) != CV_32F && CV_MAT_DEPTH(tvecs->type) != CV_64F) ||
|
||
|
((tvecs->rows != nimages || tvecs->cols*cn != 3) &&
|
||
|
(tvecs->rows != 1 || tvecs->cols != nimages || cn != 3)) )
|
||
|
CV_Error( CV_StsBadArg, "the output array of translation vectors must be 3-channel "
|
||
|
"1xn or nx1 array or 1-channel nx3 array, where n is the number of views" );
|
||
|
}
|
||
|
|
||
|
if( stdDevs )
|
||
|
{
|
||
|
cn = CV_MAT_CN(stdDevs->type);
|
||
|
if( !CV_IS_MAT(stdDevs) ||
|
||
|
(CV_MAT_DEPTH(stdDevs->type) != CV_32F && CV_MAT_DEPTH(stdDevs->type) != CV_64F) ||
|
||
|
((stdDevs->rows != (nimages*6 + NINTRINSIC) || stdDevs->cols*cn != 1) &&
|
||
|
(stdDevs->rows != 1 || stdDevs->cols != (nimages*6 + NINTRINSIC) || cn != 1)) )
|
||
|
CV_Error( CV_StsBadArg, "the output array of standard deviations vectors must be 1-channel "
|
||
|
"1x(n*6 + NINTRINSIC) or (n*6 + NINTRINSIC)x1 array, where n is the number of views" );
|
||
|
}
|
||
|
|
||
|
if( (CV_MAT_TYPE(cameraMatrix->type) != CV_32FC1 &&
|
||
|
CV_MAT_TYPE(cameraMatrix->type) != CV_64FC1) ||
|
||
|
cameraMatrix->rows != 3 || cameraMatrix->cols != 3 )
|
||
|
CV_Error( CV_StsBadArg,
|
||
|
"Intrinsic parameters must be 3x3 floating-point matrix" );
|
||
|
|
||
|
if( (CV_MAT_TYPE(distCoeffs->type) != CV_32FC1 &&
|
||
|
CV_MAT_TYPE(distCoeffs->type) != CV_64FC1) ||
|
||
|
(distCoeffs->cols != 1 && distCoeffs->rows != 1) ||
|
||
|
(distCoeffs->cols*distCoeffs->rows != 4 &&
|
||
|
distCoeffs->cols*distCoeffs->rows != 5 &&
|
||
|
distCoeffs->cols*distCoeffs->rows != 8 &&
|
||
|
distCoeffs->cols*distCoeffs->rows != 12 &&
|
||
|
distCoeffs->cols*distCoeffs->rows != 14) )
|
||
|
CV_Error( CV_StsBadArg, cvDistCoeffErr );
|
||
|
|
||
|
for( i = 0; i < nimages; i++ )
|
||
|
{
|
||
|
ni = npoints->data.i[i*npstep];
|
||
|
if( ni < 4 )
|
||
|
{
|
||
|
CV_Error_( CV_StsOutOfRange, ("The number of points in the view #%d is < 4", i));
|
||
|
}
|
||
|
maxPoints = MAX( maxPoints, ni );
|
||
|
total += ni;
|
||
|
}
|
||
|
|
||
|
Mat matM( 1, total, CV_64FC3 );
|
||
|
Mat _m( 1, total, CV_64FC2 );
|
||
|
|
||
|
if(CV_MAT_CN(objectPoints->type) == 3) {
|
||
|
cvarrToMat(objectPoints).convertTo(matM, CV_64F);
|
||
|
} else {
|
||
|
convertPointsHomogeneous(cvarrToMat(objectPoints), matM);
|
||
|
}
|
||
|
|
||
|
if(CV_MAT_CN(imagePoints->type) == 2) {
|
||
|
cvarrToMat(imagePoints).convertTo(_m, CV_64F);
|
||
|
} else {
|
||
|
convertPointsHomogeneous(cvarrToMat(imagePoints), _m);
|
||
|
}
|
||
|
|
||
|
nparams = NINTRINSIC + nimages*6;
|
||
|
Mat _Ji( maxPoints*2, NINTRINSIC, CV_64FC1, Scalar(0));
|
||
|
Mat _Je( maxPoints*2, 6, CV_64FC1 );
|
||
|
Mat _err( maxPoints*2, 1, CV_64FC1 );
|
||
|
|
||
|
_k = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k);
|
||
|
if( distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) < 8 )
|
||
|
{
|
||
|
if( distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) < 5 )
|
||
|
flags |= CALIB_FIX_K3;
|
||
|
flags |= CALIB_FIX_K4 | CALIB_FIX_K5 | CALIB_FIX_K6;
|
||
|
}
|
||
|
const double minValidAspectRatio = 0.01;
|
||
|
const double maxValidAspectRatio = 100.0;
|
||
|
|
||
|
// 1. initialize intrinsic parameters & LM solver
|
||
|
if( flags & CALIB_USE_INTRINSIC_GUESS )
|
||
|
{
|
||
|
cvConvert( cameraMatrix, &matA );
|
||
|
if( A(0, 0) <= 0 || A(1, 1) <= 0 )
|
||
|
CV_Error( CV_StsOutOfRange, "Focal length (fx and fy) must be positive" );
|
||
|
if( A(0, 2) < 0 || A(0, 2) >= imageSize.width ||
|
||
|
A(1, 2) < 0 || A(1, 2) >= imageSize.height )
|
||
|
CV_Error( CV_StsOutOfRange, "Principal point must be within the image" );
|
||
|
if( fabs(A(0, 1)) > 1e-5 )
|
||
|
CV_Error( CV_StsOutOfRange, "Non-zero skew is not supported by the function" );
|
||
|
if( fabs(A(1, 0)) > 1e-5 || fabs(A(2, 0)) > 1e-5 ||
|
||
|
fabs(A(2, 1)) > 1e-5 || fabs(A(2,2)-1) > 1e-5 )
|
||
|
CV_Error( CV_StsOutOfRange,
|
||
|
"The intrinsic matrix must have [fx 0 cx; 0 fy cy; 0 0 1] shape" );
|
||
|
A(0, 1) = A(1, 0) = A(2, 0) = A(2, 1) = 0.;
|
||
|
A(2, 2) = 1.;
|
||
|
|
||
|
if( flags & CALIB_FIX_ASPECT_RATIO )
|
||
|
{
|
||
|
aspectRatio = A(0, 0)/A(1, 1);
|
||
|
|
||
|
if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio )
|
||
|
CV_Error( CV_StsOutOfRange,
|
||
|
"The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" );
|
||
|
}
|
||
|
cvConvert( distCoeffs, &_k );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Scalar mean, sdv;
|
||
|
meanStdDev(matM, mean, sdv);
|
||
|
if( fabs(mean[2]) > 1e-5 || fabs(sdv[2]) > 1e-5 )
|
||
|
CV_Error( CV_StsBadArg,
|
||
|
"For non-planar calibration rigs the initial intrinsic matrix must be specified" );
|
||
|
for( i = 0; i < total; i++ )
|
||
|
matM.at<Point3d>(i).z = 0.;
|
||
|
|
||
|
if( flags & CALIB_FIX_ASPECT_RATIO )
|
||
|
{
|
||
|
aspectRatio = cvmGet(cameraMatrix,0,0);
|
||
|
aspectRatio /= cvmGet(cameraMatrix,1,1);
|
||
|
if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio )
|
||
|
CV_Error( CV_StsOutOfRange,
|
||
|
"The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" );
|
||
|
}
|
||
|
CvMat _matM(matM), m(_m);
|
||
|
cvInitIntrinsicParams2D( &_matM, &m, npoints, imageSize, &matA, aspectRatio );
|
||
|
}
|
||
|
|
||
|
//CvLevMarq solver( nparams, 0, termCrit );
|
||
|
cvfork::CvLevMarqFork solver( nparams, 0, termCrit );
|
||
|
Mat allErrors(1, total, CV_64FC2);
|
||
|
|
||
|
if(flags & CALIB_USE_LU) {
|
||
|
solver.solveMethod = DECOMP_LU;
|
||
|
}
|
||
|
else if(flags & CALIB_USE_QR)
|
||
|
solver.solveMethod = DECOMP_QR;
|
||
|
|
||
|
{
|
||
|
double* param = solver.param->data.db;
|
||
|
uchar* mask = solver.mask->data.ptr;
|
||
|
|
||
|
param[0] = A(0, 0); param[1] = A(1, 1); param[2] = A(0, 2); param[3] = A(1, 2);
|
||
|
std::copy(k, k + 14, param + 4);
|
||
|
|
||
|
if( flags & CV_CALIB_FIX_FOCAL_LENGTH )
|
||
|
mask[0] = mask[1] = 0;
|
||
|
if( flags & CV_CALIB_FIX_PRINCIPAL_POINT )
|
||
|
mask[2] = mask[3] = 0;
|
||
|
if( flags & CV_CALIB_ZERO_TANGENT_DIST )
|
||
|
{
|
||
|
param[6] = param[7] = 0;
|
||
|
mask[6] = mask[7] = 0;
|
||
|
}
|
||
|
if( !(flags & CALIB_RATIONAL_MODEL) )
|
||
|
flags |= CALIB_FIX_K4 + CALIB_FIX_K5 + CALIB_FIX_K6;
|
||
|
if( !(flags & CV_CALIB_THIN_PRISM_MODEL))
|
||
|
flags |= CALIB_FIX_S1_S2_S3_S4;
|
||
|
if( !(flags & CV_CALIB_TILTED_MODEL))
|
||
|
flags |= CALIB_FIX_TAUX_TAUY;
|
||
|
|
||
|
mask[ 4] = !(flags & CALIB_FIX_K1);
|
||
|
mask[ 5] = !(flags & CALIB_FIX_K2);
|
||
|
mask[ 8] = !(flags & CALIB_FIX_K3);
|
||
|
mask[ 9] = !(flags & CALIB_FIX_K4);
|
||
|
mask[10] = !(flags & CALIB_FIX_K5);
|
||
|
mask[11] = !(flags & CALIB_FIX_K6);
|
||
|
|
||
|
if(flags & CALIB_FIX_S1_S2_S3_S4)
|
||
|
{
|
||
|
mask[12] = 0;
|
||
|
mask[13] = 0;
|
||
|
mask[14] = 0;
|
||
|
mask[15] = 0;
|
||
|
}
|
||
|
if(flags & CALIB_FIX_TAUX_TAUY)
|
||
|
{
|
||
|
mask[16] = 0;
|
||
|
mask[17] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 2. initialize extrinsic parameters
|
||
|
for( i = 0, pos = 0; i < nimages; i++, pos += ni )
|
||
|
{
|
||
|
CvMat _ri, _ti;
|
||
|
ni = npoints->data.i[i*npstep];
|
||
|
|
||
|
cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 );
|
||
|
cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 );
|
||
|
|
||
|
CvMat _Mi(matM.colRange(pos, pos + ni));
|
||
|
CvMat _mi(_m.colRange(pos, pos + ni));
|
||
|
|
||
|
cvFindExtrinsicCameraParams2( &_Mi, &_mi, &matA, &_k, &_ri, &_ti );
|
||
|
}
|
||
|
|
||
|
// 3. run the optimization
|
||
|
for(;;)
|
||
|
{
|
||
|
const CvMat* _param = 0;
|
||
|
CvMat *_JtJ = 0, *_JtErr = 0;
|
||
|
double* _errNorm = 0;
|
||
|
bool proceed = solver.updateAlt( _param, _JtJ, _JtErr, _errNorm );
|
||
|
double *param = solver.param->data.db, *pparam = solver.prevParam->data.db;
|
||
|
|
||
|
if( flags & CALIB_FIX_ASPECT_RATIO )
|
||
|
{
|
||
|
param[0] = param[1]*aspectRatio;
|
||
|
pparam[0] = pparam[1]*aspectRatio;
|
||
|
}
|
||
|
|
||
|
A(0, 0) = param[0]; A(1, 1) = param[1]; A(0, 2) = param[2]; A(1, 2) = param[3];
|
||
|
std::copy(param + 4, param + 4 + 14, k);
|
||
|
|
||
|
if( !proceed ) {
|
||
|
//do errors estimation
|
||
|
if(stdDevs) {
|
||
|
Ptr<CvMat> JtJ(cvCreateMat(nparams, nparams, CV_64F));
|
||
|
CvMat cvMatM(matM);
|
||
|
cvEvaluateJtJ2(JtJ, &matA, &_k, &cvMatM, solver.param, npoints, flags, NINTRINSIC, aspectRatio);
|
||
|
|
||
|
Mat mask = cvarrToMat(solver.mask);
|
||
|
int nparams_nz = countNonZero(mask);
|
||
|
Mat JtJinv, JtJN;
|
||
|
JtJN.create(nparams_nz, nparams_nz, CV_64F);
|
||
|
subMatrix(cvarrToMat(JtJ), JtJN, mask, mask);
|
||
|
completeSymm(JtJN, false);
|
||
|
#ifndef USE_LAPACK
|
||
|
cv::invert(JtJN, JtJinv, DECOMP_SVD);
|
||
|
#else
|
||
|
cvfork::invert(JtJN, JtJinv, DECOMP_SVD);
|
||
|
#endif
|
||
|
double sigma2 = norm(allErrors, NORM_L2SQR) / (total - nparams_nz);
|
||
|
Mat stdDevsM = cvarrToMat(stdDevs);
|
||
|
int j = 0;
|
||
|
for (int s = 0; s < nparams; s++)
|
||
|
if(mask.data[s]) {
|
||
|
stdDevsM.at<double>(s) = std::sqrt(JtJinv.at<double>(j,j)*sigma2);
|
||
|
j++;
|
||
|
}
|
||
|
else
|
||
|
stdDevsM.at<double>(s) = 0;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
reprojErr = 0;
|
||
|
|
||
|
for( i = 0, pos = 0; i < nimages; i++, pos += ni )
|
||
|
{
|
||
|
CvMat _ri, _ti;
|
||
|
ni = npoints->data.i[i*npstep];
|
||
|
|
||
|
cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 );
|
||
|
cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 );
|
||
|
|
||
|
CvMat _Mi(matM.colRange(pos, pos + ni));
|
||
|
CvMat _mi(_m.colRange(pos, pos + ni));
|
||
|
CvMat _me(allErrors.colRange(pos, pos + ni));
|
||
|
|
||
|
_Je.resize(ni*2); _Ji.resize(ni*2); _err.resize(ni*2);
|
||
|
CvMat _dpdr(_Je.colRange(0, 3));
|
||
|
CvMat _dpdt(_Je.colRange(3, 6));
|
||
|
CvMat _dpdf(_Ji.colRange(0, 2));
|
||
|
CvMat _dpdc(_Ji.colRange(2, 4));
|
||
|
CvMat _dpdk(_Ji.colRange(4, NINTRINSIC));
|
||
|
CvMat _mp(_err.reshape(2, 1));
|
||
|
|
||
|
if( solver.state == CvLevMarq::CALC_J )
|
||
|
{
|
||
|
cvProjectPoints2( &_Mi, &_ri, &_ti, &matA, &_k, &_mp, &_dpdr, &_dpdt,
|
||
|
(flags & CALIB_FIX_FOCAL_LENGTH) ? 0 : &_dpdf,
|
||
|
(flags & CALIB_FIX_PRINCIPAL_POINT) ? 0 : &_dpdc, &_dpdk,
|
||
|
(flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio : 0);
|
||
|
}
|
||
|
else
|
||
|
cvProjectPoints2( &_Mi, &_ri, &_ti, &matA, &_k, &_mp );
|
||
|
|
||
|
cvSub( &_mp, &_mi, &_mp );
|
||
|
|
||
|
if( solver.state == CvLevMarq::CALC_J )
|
||
|
{
|
||
|
Mat JtJ(cvarrToMat(_JtJ)), JtErr(cvarrToMat(_JtErr));
|
||
|
|
||
|
// see HZ: (A6.14) for details on the structure of the Jacobian
|
||
|
JtJ(Rect(0, 0, NINTRINSIC, NINTRINSIC)) += _Ji.t() * _Ji;
|
||
|
JtJ(Rect(NINTRINSIC + i * 6, NINTRINSIC + i * 6, 6, 6)) = _Je.t() * _Je;
|
||
|
JtJ(Rect(NINTRINSIC + i * 6, 0, 6, NINTRINSIC)) = _Ji.t() * _Je;
|
||
|
|
||
|
JtErr.rowRange(0, NINTRINSIC) += _Ji.t() * _err;
|
||
|
JtErr.rowRange(NINTRINSIC + i * 6, NINTRINSIC + (i + 1) * 6) = _Je.t() * _err;
|
||
|
|
||
|
}
|
||
|
if (stdDevs || perViewErrors)
|
||
|
cvCopy(&_mp, &_me);
|
||
|
reprojErr += norm(_err, NORM_L2SQR);
|
||
|
}
|
||
|
|
||
|
if( _errNorm )
|
||
|
*_errNorm = reprojErr;
|
||
|
}
|
||
|
|
||
|
// 4. store the results
|
||
|
cvConvert( &matA, cameraMatrix );
|
||
|
cvConvert( &_k, distCoeffs );
|
||
|
|
||
|
for( i = 0, pos = 0; i < nimages; i++)
|
||
|
{
|
||
|
CvMat src, dst;
|
||
|
if( perViewErrors )
|
||
|
{
|
||
|
ni = npoints->data.i[i*npstep];
|
||
|
perViewErrors->data.db[i] = std::sqrt(cv::norm(allErrors.colRange(pos, pos + ni), NORM_L2SQR) / ni);
|
||
|
pos+=ni;
|
||
|
}
|
||
|
|
||
|
if( rvecs )
|
||
|
{
|
||
|
src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 );
|
||
|
if( rvecs->rows == nimages && rvecs->cols*CV_MAT_CN(rvecs->type) == 9 )
|
||
|
{
|
||
|
dst = cvMat( 3, 3, CV_MAT_DEPTH(rvecs->type),
|
||
|
rvecs->data.ptr + rvecs->step*i );
|
||
|
cvRodrigues2( &src, &matA );
|
||
|
cvConvert( &matA, &dst );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dst = cvMat( 3, 1, CV_MAT_DEPTH(rvecs->type), rvecs->rows == 1 ?
|
||
|
rvecs->data.ptr + i*CV_ELEM_SIZE(rvecs->type) :
|
||
|
rvecs->data.ptr + rvecs->step*i );
|
||
|
cvConvert( &src, &dst );
|
||
|
}
|
||
|
}
|
||
|
if( tvecs )
|
||
|
{
|
||
|
src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 + 3 );
|
||
|
dst = cvMat( 3, 1, CV_MAT_DEPTH(tvecs->type), tvecs->rows == 1 ?
|
||
|
tvecs->data.ptr + i*CV_ELEM_SIZE(tvecs->type) :
|
||
|
tvecs->data.ptr + tvecs->step*i );
|
||
|
cvConvert( &src, &dst );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return std::sqrt(reprojErr/total);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static Mat prepareCameraMatrix(Mat& cameraMatrix0, int rtype)
|
||
|
{
|
||
|
Mat cameraMatrix = Mat::eye(3, 3, rtype);
|
||
|
if( cameraMatrix0.size() == cameraMatrix.size() )
|
||
|
cameraMatrix0.convertTo(cameraMatrix, rtype);
|
||
|
return cameraMatrix;
|
||
|
}
|
||
|
|
||
|
static Mat prepareDistCoeffs(Mat& distCoeffs0, int rtype)
|
||
|
{
|
||
|
Mat distCoeffs = Mat::zeros(distCoeffs0.cols == 1 ? Size(1, 14) : Size(14, 1), rtype);
|
||
|
if( distCoeffs0.size() == Size(1, 4) ||
|
||
|
distCoeffs0.size() == Size(1, 5) ||
|
||
|
distCoeffs0.size() == Size(1, 8) ||
|
||
|
distCoeffs0.size() == Size(1, 12) ||
|
||
|
distCoeffs0.size() == Size(1, 14) ||
|
||
|
distCoeffs0.size() == Size(4, 1) ||
|
||
|
distCoeffs0.size() == Size(5, 1) ||
|
||
|
distCoeffs0.size() == Size(8, 1) ||
|
||
|
distCoeffs0.size() == Size(12, 1) ||
|
||
|
distCoeffs0.size() == Size(14, 1) )
|
||
|
{
|
||
|
Mat dstCoeffs(distCoeffs, Rect(0, 0, distCoeffs0.cols, distCoeffs0.rows));
|
||
|
distCoeffs0.convertTo(dstCoeffs, rtype);
|
||
|
}
|
||
|
return distCoeffs;
|
||
|
}
|
||
|
|
||
|
static void collectCalibrationData( InputArrayOfArrays objectPoints,
|
||
|
InputArrayOfArrays imagePoints1,
|
||
|
InputArrayOfArrays imagePoints2,
|
||
|
Mat& objPtMat, Mat& imgPtMat1, Mat* imgPtMat2,
|
||
|
Mat& npoints )
|
||
|
{
|
||
|
int nimages = (int)objectPoints.total();
|
||
|
int i, j = 0, ni = 0, total = 0;
|
||
|
CV_Assert(nimages > 0 && nimages == (int)imagePoints1.total() &&
|
||
|
(!imgPtMat2 || nimages == (int)imagePoints2.total()));
|
||
|
|
||
|
for( i = 0; i < nimages; i++ )
|
||
|
{
|
||
|
ni = objectPoints.getMat(i).checkVector(3, CV_32F);
|
||
|
if( ni <= 0 )
|
||
|
CV_Error(CV_StsUnsupportedFormat, "objectPoints should contain vector of vectors of points of type Point3f");
|
||
|
int ni1 = imagePoints1.getMat(i).checkVector(2, CV_32F);
|
||
|
if( ni1 <= 0 )
|
||
|
CV_Error(CV_StsUnsupportedFormat, "imagePoints1 should contain vector of vectors of points of type Point2f");
|
||
|
CV_Assert( ni == ni1 );
|
||
|
|
||
|
total += ni;
|
||
|
}
|
||
|
|
||
|
npoints.create(1, (int)nimages, CV_32S);
|
||
|
objPtMat.create(1, (int)total, CV_32FC3);
|
||
|
imgPtMat1.create(1, (int)total, CV_32FC2);
|
||
|
Point2f* imgPtData2 = 0;
|
||
|
|
||
|
if( imgPtMat2 )
|
||
|
{
|
||
|
imgPtMat2->create(1, (int)total, CV_32FC2);
|
||
|
imgPtData2 = imgPtMat2->ptr<Point2f>();
|
||
|
}
|
||
|
|
||
|
Point3f* objPtData = objPtMat.ptr<Point3f>();
|
||
|
Point2f* imgPtData1 = imgPtMat1.ptr<Point2f>();
|
||
|
|
||
|
for( i = 0; i < nimages; i++, j += ni )
|
||
|
{
|
||
|
Mat objpt = objectPoints.getMat(i);
|
||
|
Mat imgpt1 = imagePoints1.getMat(i);
|
||
|
ni = objpt.checkVector(3, CV_32F);
|
||
|
npoints.at<int>(i) = ni;
|
||
|
memcpy( objPtData + j, objpt.ptr(), ni*sizeof(objPtData[0]) );
|
||
|
memcpy( imgPtData1 + j, imgpt1.ptr(), ni*sizeof(imgPtData1[0]) );
|
||
|
|
||
|
if( imgPtData2 )
|
||
|
{
|
||
|
Mat imgpt2 = imagePoints2.getMat(i);
|
||
|
int ni2 = imgpt2.checkVector(2, CV_32F);
|
||
|
CV_Assert( ni == ni2 );
|
||
|
memcpy( imgPtData2 + j, imgpt2.ptr(), ni*sizeof(imgPtData2[0]) );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double cvfork::calibrateCamera(InputArrayOfArrays _objectPoints,
|
||
|
InputArrayOfArrays _imagePoints,
|
||
|
Size imageSize, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
|
||
|
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, OutputArray _stdDeviations, OutputArray _perViewErrors, int flags, TermCriteria criteria )
|
||
|
{
|
||
|
int rtype = CV_64F;
|
||
|
Mat cameraMatrix = _cameraMatrix.getMat();
|
||
|
cameraMatrix = prepareCameraMatrix(cameraMatrix, rtype);
|
||
|
Mat distCoeffs = _distCoeffs.getMat();
|
||
|
distCoeffs = prepareDistCoeffs(distCoeffs, rtype);
|
||
|
if( !(flags & CALIB_RATIONAL_MODEL) &&
|
||
|
(!(flags & CALIB_THIN_PRISM_MODEL)) &&
|
||
|
(!(flags & CALIB_TILTED_MODEL)))
|
||
|
distCoeffs = distCoeffs.rows == 1 ? distCoeffs.colRange(0, 5) : distCoeffs.rowRange(0, 5);
|
||
|
|
||
|
int nimages = int(_objectPoints.total());
|
||
|
CV_Assert( nimages > 0 );
|
||
|
Mat objPt, imgPt, npoints, rvecM, tvecM, stdDeviationsM, errorsM;
|
||
|
|
||
|
bool rvecs_needed = _rvecs.needed(), tvecs_needed = _tvecs.needed(),
|
||
|
stddev_needed = _stdDeviations.needed(), errors_needed = _perViewErrors.needed();
|
||
|
|
||
|
bool rvecs_mat_vec = _rvecs.isMatVector();
|
||
|
bool tvecs_mat_vec = _tvecs.isMatVector();
|
||
|
|
||
|
if( rvecs_needed ) {
|
||
|
_rvecs.create(nimages, 1, CV_64FC3);
|
||
|
|
||
|
if(rvecs_mat_vec)
|
||
|
rvecM.create(nimages, 3, CV_64F);
|
||
|
else
|
||
|
rvecM = _rvecs.getMat();
|
||
|
}
|
||
|
|
||
|
if( tvecs_needed ) {
|
||
|
_tvecs.create(nimages, 1, CV_64FC3);
|
||
|
|
||
|
if(tvecs_mat_vec)
|
||
|
tvecM.create(nimages, 3, CV_64F);
|
||
|
else
|
||
|
tvecM = _tvecs.getMat();
|
||
|
}
|
||
|
|
||
|
if( stddev_needed ) {
|
||
|
_stdDeviations.create(nimages*6 + CV_CALIB_NINTRINSIC, 1, CV_64F);
|
||
|
stdDeviationsM = _stdDeviations.getMat();
|
||
|
}
|
||
|
|
||
|
if( errors_needed) {
|
||
|
_perViewErrors.create(nimages, 1, CV_64F);
|
||
|
errorsM = _perViewErrors.getMat();
|
||
|
}
|
||
|
|
||
|
collectCalibrationData( _objectPoints, _imagePoints, noArray(),
|
||
|
objPt, imgPt, 0, npoints );
|
||
|
CvMat c_objPt = objPt, c_imgPt = imgPt, c_npoints = npoints;
|
||
|
CvMat c_cameraMatrix = cameraMatrix, c_distCoeffs = distCoeffs;
|
||
|
CvMat c_rvecM = rvecM, c_tvecM = tvecM, c_stdDev = stdDeviationsM, c_errors = errorsM;
|
||
|
|
||
|
double reprojErr = cvfork::cvCalibrateCamera2(&c_objPt, &c_imgPt, &c_npoints, imageSize,
|
||
|
&c_cameraMatrix, &c_distCoeffs,
|
||
|
rvecs_needed ? &c_rvecM : NULL,
|
||
|
tvecs_needed ? &c_tvecM : NULL,
|
||
|
stddev_needed ? &c_stdDev : NULL,
|
||
|
errors_needed ? &c_errors : NULL, flags, criteria );
|
||
|
|
||
|
// overly complicated and inefficient rvec/ tvec handling to support vector<Mat>
|
||
|
for(int i = 0; i < nimages; i++ )
|
||
|
{
|
||
|
if( rvecs_needed && rvecs_mat_vec)
|
||
|
{
|
||
|
_rvecs.create(3, 1, CV_64F, i, true);
|
||
|
Mat rv = _rvecs.getMat(i);
|
||
|
memcpy(rv.ptr(), rvecM.ptr(i), 3*sizeof(double));
|
||
|
}
|
||
|
if( tvecs_needed && tvecs_mat_vec)
|
||
|
{
|
||
|
_tvecs.create(3, 1, CV_64F, i, true);
|
||
|
Mat tv = _tvecs.getMat(i);
|
||
|
memcpy(tv.ptr(), tvecM.ptr(i), 3*sizeof(double));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cameraMatrix.copyTo(_cameraMatrix);
|
||
|
distCoeffs.copyTo(_distCoeffs);
|
||
|
|
||
|
return reprojErr;
|
||
|
}
|
||
|
|
||
|
double cvfork::calibrateCameraCharuco(InputArrayOfArrays _charucoCorners, InputArrayOfArrays _charucoIds,
|
||
|
Ptr<aruco::CharucoBoard> &_board, Size imageSize,
|
||
|
InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs,
|
||
|
OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, OutputArray _stdDeviations, OutputArray _perViewErrors,
|
||
|
int flags, TermCriteria criteria) {
|
||
|
|
||
|
CV_Assert(_charucoIds.total() > 0 && (_charucoIds.total() == _charucoCorners.total()));
|
||
|
|
||
|
// Join object points of charuco corners in a single vector for calibrateCamera() function
|
||
|
std::vector< std::vector< Point3f > > allObjPoints;
|
||
|
allObjPoints.resize(_charucoIds.total());
|
||
|
for(unsigned int i = 0; i < _charucoIds.total(); i++) {
|
||
|
unsigned int nCorners = (unsigned int)_charucoIds.getMat(i).total();
|
||
|
CV_Assert(nCorners > 0 && nCorners == _charucoCorners.getMat(i).total()); //actually nCorners must be > 3 for calibration
|
||
|
allObjPoints[i].reserve(nCorners);
|
||
|
|
||
|
for(unsigned int j = 0; j < nCorners; j++) {
|
||
|
int pointId = _charucoIds.getMat(i).ptr< int >(0)[j];
|
||
|
CV_Assert(pointId >= 0 && pointId < (int)_board->chessboardCorners.size());
|
||
|
allObjPoints[i].push_back(_board->chessboardCorners[pointId]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return cvfork::calibrateCamera(allObjPoints, _charucoCorners, imageSize, _cameraMatrix, _distCoeffs,
|
||
|
_rvecs, _tvecs, _stdDeviations, _perViewErrors, flags, criteria);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void subMatrix(const cv::Mat& src, cv::Mat& dst, const std::vector<uchar>& cols,
|
||
|
const std::vector<uchar>& rows) {
|
||
|
int nonzeros_cols = cv::countNonZero(cols);
|
||
|
cv::Mat tmp(src.rows, nonzeros_cols, CV_64FC1);
|
||
|
|
||
|
for (int i = 0, j = 0; i < (int)cols.size(); i++)
|
||
|
{
|
||
|
if (cols[i])
|
||
|
{
|
||
|
src.col(i).copyTo(tmp.col(j++));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int nonzeros_rows = cv::countNonZero(rows);
|
||
|
dst.create(nonzeros_rows, nonzeros_cols, CV_64FC1);
|
||
|
for (int i = 0, j = 0; i < (int)rows.size(); i++)
|
||
|
{
|
||
|
if (rows[i])
|
||
|
{
|
||
|
tmp.row(i).copyTo(dst.row(j++));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cvfork::CvLevMarqFork::step()
|
||
|
{
|
||
|
using namespace cv;
|
||
|
const double LOG10 = log(10.);
|
||
|
double lambda = exp(lambdaLg10*LOG10);
|
||
|
int nparams = param->rows;
|
||
|
|
||
|
Mat _JtJ = cvarrToMat(JtJ);
|
||
|
Mat _mask = cvarrToMat(mask);
|
||
|
|
||
|
int nparams_nz = countNonZero(_mask);
|
||
|
if(!JtJN || JtJN->rows != nparams_nz) {
|
||
|
// prevent re-allocation in every step
|
||
|
JtJN.reset(cvCreateMat( nparams_nz, nparams_nz, CV_64F ));
|
||
|
JtJV.reset(cvCreateMat( nparams_nz, 1, CV_64F ));
|
||
|
JtJW.reset(cvCreateMat( nparams_nz, 1, CV_64F ));
|
||
|
}
|
||
|
|
||
|
Mat _JtJN = cvarrToMat(JtJN);
|
||
|
Mat _JtErr = cvarrToMat(JtJV);
|
||
|
Mat_<double> nonzero_param = cvarrToMat(JtJW);
|
||
|
|
||
|
subMatrix(cvarrToMat(JtErr), _JtErr, std::vector<uchar>(1, 1), _mask);
|
||
|
subMatrix(_JtJ, _JtJN, _mask, _mask);
|
||
|
|
||
|
if( !err )
|
||
|
completeSymm( _JtJN, completeSymmFlag );
|
||
|
#if 1
|
||
|
_JtJN.diag() *= 1. + lambda;
|
||
|
#else
|
||
|
_JtJN.diag() += lambda;
|
||
|
#endif
|
||
|
#ifndef USE_LAPACK
|
||
|
cv::solve(_JtJN, _JtErr, nonzero_param, solveMethod);
|
||
|
#else
|
||
|
cvfork::solve(_JtJN, _JtErr, nonzero_param, solveMethod);
|
||
|
#endif
|
||
|
|
||
|
int j = 0;
|
||
|
for( int i = 0; i < nparams; i++ )
|
||
|
param->data.db[i] = prevParam->data.db[i] - (mask->data.ptr[i] ? nonzero_param(j++) : 0);
|
||
|
}
|
||
|
|
||
|
cvfork::CvLevMarqFork::CvLevMarqFork(int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag)
|
||
|
{
|
||
|
init(nparams, nerrs, criteria0, _completeSymmFlag);
|
||
|
}
|
||
|
|
||
|
cvfork::CvLevMarqFork::~CvLevMarqFork()
|
||
|
{
|
||
|
clear();
|
||
|
}
|
||
|
|
||
|
bool cvfork::CvLevMarqFork::updateAlt( const CvMat*& _param, CvMat*& _JtJ, CvMat*& _JtErr, double*& _errNorm )
|
||
|
{
|
||
|
CV_Assert( !err );
|
||
|
if( state == DONE )
|
||
|
{
|
||
|
_param = param;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if( state == STARTED )
|
||
|
{
|
||
|
_param = param;
|
||
|
cvZero( JtJ );
|
||
|
cvZero( JtErr );
|
||
|
errNorm = 0;
|
||
|
_JtJ = JtJ;
|
||
|
_JtErr = JtErr;
|
||
|
_errNorm = &errNorm;
|
||
|
state = CALC_J;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if( state == CALC_J )
|
||
|
{
|
||
|
cvCopy( param, prevParam );
|
||
|
step();
|
||
|
_param = param;
|
||
|
prevErrNorm = errNorm;
|
||
|
errNorm = 0;
|
||
|
_errNorm = &errNorm;
|
||
|
state = CHECK_ERR;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
assert( state == CHECK_ERR );
|
||
|
if( errNorm > prevErrNorm )
|
||
|
{
|
||
|
if( ++lambdaLg10 <= 16 )
|
||
|
{
|
||
|
step();
|
||
|
_param = param;
|
||
|
errNorm = 0;
|
||
|
_errNorm = &errNorm;
|
||
|
state = CHECK_ERR;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
lambdaLg10 = MAX(lambdaLg10-1, -16);
|
||
|
if( ++iters >= criteria.max_iter ||
|
||
|
cvNorm(param, prevParam, CV_RELATIVE_L2) < criteria.epsilon )
|
||
|
{
|
||
|
//printf("iters %i\n", iters);
|
||
|
_param = param;
|
||
|
state = DONE;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
prevErrNorm = errNorm;
|
||
|
cvZero( JtJ );
|
||
|
cvZero( JtErr );
|
||
|
_param = param;
|
||
|
_JtJ = JtJ;
|
||
|
_JtErr = JtErr;
|
||
|
state = CALC_J;
|
||
|
return true;
|
||
|
}
|