2012-03-15 15:36:01 +01:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
# include "test_precomp.hpp"
2013-03-13 13:22:44 +01:00
# include "opencv2/calib3d.hpp"
2012-03-15 15:36:01 +01:00
using namespace std ;
using namespace cv ;
const string FEATURES2D_DIR = " features2d " ;
const string DETECTOR_DIR = FEATURES2D_DIR + " /feature_detectors " ;
const string DESCRIPTOR_DIR = FEATURES2D_DIR + " /descriptor_extractors " ;
const string IMAGE_FILENAME = " tsukuba.png " ;
/****************************************************************************************\
* Regression tests for feature detectors comparing keypoints . *
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
class CV_FeatureDetectorTest : public cvtest : : BaseTest
{
public :
CV_FeatureDetectorTest ( const string & _name , const Ptr < FeatureDetector > & _fdetector ) :
name ( _name ) , fdetector ( _fdetector ) { }
protected :
bool isSimilarKeypoints ( const KeyPoint & p1 , const KeyPoint & p2 ) ;
void compareKeypointSets ( const vector < KeyPoint > & validKeypoints , const vector < KeyPoint > & calcKeypoints ) ;
void emptyDataTest ( ) ;
void regressionTest ( ) ; // TODO test of detect() with mask
virtual void run ( int ) ;
string name ;
Ptr < FeatureDetector > fdetector ;
} ;
void CV_FeatureDetectorTest : : emptyDataTest ( )
{
// One image.
Mat image ;
vector < KeyPoint > keypoints ;
try
{
fdetector - > detect ( image , keypoints ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " detect() on empty image must not generate exception (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
if ( ! keypoints . empty ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " detect() on empty image must return empty keypoints vector (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
return ;
}
// Several images.
vector < Mat > images ;
vector < vector < KeyPoint > > keypointCollection ;
try
{
fdetector - > detect ( images , keypointCollection ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " detect() on empty image vector must not generate exception (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
bool CV_FeatureDetectorTest : : isSimilarKeypoints ( const KeyPoint & p1 , const KeyPoint & p2 )
{
const float maxPtDif = 1.f ;
const float maxSizeDif = 1.f ;
const float maxAngleDif = 2.f ;
const float maxResponseDif = 0.1f ;
float dist = ( float ) norm ( p1 . pt - p2 . pt ) ;
return ( dist < maxPtDif & &
fabs ( p1 . size - p2 . size ) < maxSizeDif & &
abs ( p1 . angle - p2 . angle ) < maxAngleDif & &
abs ( p1 . response - p2 . response ) < maxResponseDif & &
p1 . octave = = p2 . octave & &
p1 . class_id = = p2 . class_id ) ;
}
void CV_FeatureDetectorTest : : compareKeypointSets ( const vector < KeyPoint > & validKeypoints , const vector < KeyPoint > & calcKeypoints )
{
const float maxCountRatioDif = 0.01f ;
// Compare counts of validation and calculated keypoints.
float countRatio = ( float ) validKeypoints . size ( ) / ( float ) calcKeypoints . size ( ) ;
if ( countRatio < 1 - maxCountRatioDif | | countRatio > 1.f + maxCountRatioDif )
{
ts - > printf ( cvtest : : TS : : LOG , " Bad keypoints count ratio (validCount = %d, calcCount = %d). \n " ,
validKeypoints . size ( ) , calcKeypoints . size ( ) ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
return ;
}
int progress = 0 , progressCount = ( int ) ( validKeypoints . size ( ) * calcKeypoints . size ( ) ) ;
int badPointCount = 0 , commonPointCount = max ( ( int ) validKeypoints . size ( ) , ( int ) calcKeypoints . size ( ) ) ;
for ( size_t v = 0 ; v < validKeypoints . size ( ) ; v + + )
{
int nearestIdx = - 1 ;
float minDist = std : : numeric_limits < float > : : max ( ) ;
for ( size_t c = 0 ; c < calcKeypoints . size ( ) ; c + + )
{
progress = update_progress ( progress , ( int ) ( v * calcKeypoints . size ( ) + c ) , progressCount , 0 ) ;
float curDist = ( float ) norm ( calcKeypoints [ c ] . pt - validKeypoints [ v ] . pt ) ;
if ( curDist < minDist )
{
minDist = curDist ;
nearestIdx = ( int ) c ;
}
}
assert ( minDist > = 0 ) ;
if ( ! isSimilarKeypoints ( validKeypoints [ v ] , calcKeypoints [ nearestIdx ] ) )
badPointCount + + ;
}
ts - > printf ( cvtest : : TS : : LOG , " badPointCount = %d; validPointCount = %d; calcPointCount = %d \n " ,
badPointCount , validKeypoints . size ( ) , calcKeypoints . size ( ) ) ;
if ( badPointCount > 0.9 * commonPointCount )
{
ts - > printf ( cvtest : : TS : : LOG , " - Bad accuracy! \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_BAD_ACCURACY ) ;
return ;
}
ts - > printf ( cvtest : : TS : : LOG , " - OK \n " ) ;
}
void CV_FeatureDetectorTest : : regressionTest ( )
{
assert ( ! fdetector . empty ( ) ) ;
string imgFilename = string ( ts - > get_data_path ( ) ) + FEATURES2D_DIR + " / " + IMAGE_FILENAME ;
string resFilename = string ( ts - > get_data_path ( ) ) + DETECTOR_DIR + " / " + string ( name ) + " .xml.gz " ;
// Read the test image.
Mat image = imread ( imgFilename ) ;
if ( image . empty ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Image %s can not be read. \n " , imgFilename . c_str ( ) ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
FileStorage fs ( resFilename , FileStorage : : READ ) ;
// Compute keypoints.
vector < KeyPoint > calcKeypoints ;
fdetector - > detect ( image , calcKeypoints ) ;
if ( fs . isOpened ( ) ) // Compare computed and valid keypoints.
{
// TODO compare saved feature detector params with current ones
// Read validation keypoints set.
vector < KeyPoint > validKeypoints ;
read ( fs [ " keypoints " ] , validKeypoints ) ;
if ( validKeypoints . empty ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Keypoints can not be read. \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
compareKeypointSets ( validKeypoints , calcKeypoints ) ;
}
else // Write detector parameters and computed keypoints as validation data.
{
fs . open ( resFilename , FileStorage : : WRITE ) ;
if ( ! fs . isOpened ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " File %s can not be opened to write. \n " , resFilename . c_str ( ) ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
else
{
fs < < " detector_params " < < " { " ;
fdetector - > write ( fs ) ;
fs < < " } " ;
write ( fs , " keypoints " , calcKeypoints ) ;
}
}
}
void CV_FeatureDetectorTest : : run ( int /*start_from*/ )
{
2013-08-13 15:36:38 +02:00
if ( ! fdetector )
2012-03-15 15:36:01 +01:00
{
ts - > printf ( cvtest : : TS : : LOG , " Feature detector is empty. \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
emptyDataTest ( ) ;
regressionTest ( ) ;
ts - > set_failed_test_info ( cvtest : : TS : : OK ) ;
}
/****************************************************************************************\
* Regression tests for descriptor extractors . *
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static void writeMatInBin ( const Mat & mat , const string & filename )
{
FILE * f = fopen ( filename . c_str ( ) , " wb " ) ;
if ( f )
{
int type = mat . type ( ) ;
fwrite ( ( void * ) & mat . rows , sizeof ( int ) , 1 , f ) ;
fwrite ( ( void * ) & mat . cols , sizeof ( int ) , 1 , f ) ;
fwrite ( ( void * ) & type , sizeof ( int ) , 1 , f ) ;
int dataSize = ( int ) ( mat . step * mat . rows * mat . channels ( ) ) ;
fwrite ( ( void * ) & dataSize , sizeof ( int ) , 1 , f ) ;
fwrite ( ( void * ) mat . data , 1 , dataSize , f ) ;
fclose ( f ) ;
}
}
static Mat readMatFromBin ( const string & filename )
{
FILE * f = fopen ( filename . c_str ( ) , " rb " ) ;
if ( f )
{
int rows , cols , type , dataSize ;
2012-04-13 23:50:59 +02:00
size_t elements_read1 = fread ( ( void * ) & rows , sizeof ( int ) , 1 , f ) ;
size_t elements_read2 = fread ( ( void * ) & cols , sizeof ( int ) , 1 , f ) ;
size_t elements_read3 = fread ( ( void * ) & type , sizeof ( int ) , 1 , f ) ;
size_t elements_read4 = fread ( ( void * ) & dataSize , sizeof ( int ) , 1 , f ) ;
CV_Assert ( elements_read1 = = 1 & & elements_read2 = = 1 & & elements_read3 = = 1 & & elements_read4 = = 1 ) ;
2012-03-15 15:36:01 +01:00
2013-10-04 15:03:15 +02:00
int step = dataSize / rows / CV_ELEM_SIZE ( type ) ;
CV_Assert ( step > = cols ) ;
2013-04-11 17:27:54 +02:00
Mat m = Mat ( rows , step , type ) . colRange ( 0 , cols ) ;
size_t elements_read = fread ( m . ptr ( ) , 1 , dataSize , f ) ;
2012-04-13 23:50:59 +02:00
CV_Assert ( elements_read = = ( size_t ) ( dataSize ) ) ;
2012-03-15 15:36:01 +01:00
fclose ( f ) ;
2013-04-11 17:27:54 +02:00
return m ;
2012-03-15 15:36:01 +01:00
}
return Mat ( ) ;
}
template < class Distance >
class CV_DescriptorExtractorTest : public cvtest : : BaseTest
{
public :
typedef typename Distance : : ValueType ValueType ;
typedef typename Distance : : ResultType DistanceType ;
2012-07-02 14:44:41 +02:00
CV_DescriptorExtractorTest ( const string _name , DistanceType _maxDist , const Ptr < DescriptorExtractor > & _dextractor ,
2012-03-15 15:36:01 +01:00
Distance d = Distance ( ) ) :
2012-07-02 14:44:41 +02:00
name ( _name ) , maxDist ( _maxDist ) , dextractor ( _dextractor ) , distance ( d ) { }
2012-03-15 15:36:01 +01:00
protected :
virtual void createDescriptorExtractor ( ) { }
void compareDescriptors ( const Mat & validDescriptors , const Mat & calcDescriptors )
{
if ( validDescriptors . size ! = calcDescriptors . size | | validDescriptors . type ( ) ! = calcDescriptors . type ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Valid and computed descriptors matrices must have the same size and type. \n " ) ;
2012-04-30 16:33:52 +02:00
ts - > printf ( cvtest : : TS : : LOG , " Valid size is (%d x %d) actual size is (%d x %d). \n " , validDescriptors . rows , validDescriptors . cols , calcDescriptors . rows , calcDescriptors . cols ) ;
ts - > printf ( cvtest : : TS : : LOG , " Valid type is %d actual type is %d. \n " , validDescriptors . type ( ) , calcDescriptors . type ( ) ) ;
2012-03-15 15:36:01 +01:00
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
CV_Assert ( DataType < ValueType > : : type = = validDescriptors . type ( ) ) ;
int dimension = validDescriptors . cols ;
DistanceType curMaxDist = std : : numeric_limits < DistanceType > : : min ( ) ;
for ( int y = 0 ; y < validDescriptors . rows ; y + + )
{
DistanceType dist = distance ( validDescriptors . ptr < ValueType > ( y ) , calcDescriptors . ptr < ValueType > ( y ) , dimension ) ;
if ( dist > curMaxDist )
curMaxDist = dist ;
}
stringstream ss ;
ss < < " Max distance between valid and computed descriptors " < < curMaxDist ;
if ( curMaxDist < maxDist )
ss < < " . " < < endl ;
else
{
ss < < " > " < < maxDist < < " - bad accuracy! " < < endl ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_BAD_ACCURACY ) ;
}
ts - > printf ( cvtest : : TS : : LOG , ss . str ( ) . c_str ( ) ) ;
}
void emptyDataTest ( )
{
assert ( ! dextractor . empty ( ) ) ;
// One image.
Mat image ;
vector < KeyPoint > keypoints ;
Mat descriptors ;
try
{
dextractor - > compute ( image , keypoints , descriptors ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " compute() on empty image and empty keypoints must not generate exception (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
}
image . create ( 50 , 50 , CV_8UC3 ) ;
try
{
dextractor - > compute ( image , keypoints , descriptors ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " compute() on nonempty image and empty keypoints must not generate exception (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
}
// Several images.
vector < Mat > images ;
vector < vector < KeyPoint > > keypointsCollection ;
vector < Mat > descriptorsCollection ;
try
{
dextractor - > compute ( images , keypointsCollection , descriptorsCollection ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " compute() on empty images and empty keypoints collection must not generate exception (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
}
}
void regressionTest ( )
{
assert ( ! dextractor . empty ( ) ) ;
// Read the test image.
string imgFilename = string ( ts - > get_data_path ( ) ) + FEATURES2D_DIR + " / " + IMAGE_FILENAME ;
Mat img = imread ( imgFilename ) ;
if ( img . empty ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Image %s can not be read. \n " , imgFilename . c_str ( ) ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
vector < KeyPoint > keypoints ;
FileStorage fs ( string ( ts - > get_data_path ( ) ) + FEATURES2D_DIR + " /keypoints.xml.gz " , FileStorage : : READ ) ;
if ( fs . isOpened ( ) )
{
read ( fs . getFirstTopLevelNode ( ) , keypoints ) ;
Mat calcDescriptors ;
double t = ( double ) getTickCount ( ) ;
dextractor - > compute ( img , keypoints , calcDescriptors ) ;
t = getTickCount ( ) - t ;
2013-04-11 17:27:54 +02:00
ts - > printf ( cvtest : : TS : : LOG , " \n Average time of computing one descriptor = %g ms. \n " , t / ( ( double ) getTickFrequency ( ) * 1000. ) / calcDescriptors . rows ) ;
2012-03-15 15:36:01 +01:00
if ( calcDescriptors . rows ! = ( int ) keypoints . size ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Count of computed descriptors and keypoints count must be equal. \n " ) ;
ts - > printf ( cvtest : : TS : : LOG , " Count of keypoints is %d. \n " , ( int ) keypoints . size ( ) ) ;
ts - > printf ( cvtest : : TS : : LOG , " Count of computed descriptors is %d. \n " , calcDescriptors . rows ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
return ;
}
if ( calcDescriptors . cols ! = dextractor - > descriptorSize ( ) | | calcDescriptors . type ( ) ! = dextractor - > descriptorType ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect descriptor size or descriptor type. \n " ) ;
ts - > printf ( cvtest : : TS : : LOG , " Expected size is %d. \n " , dextractor - > descriptorSize ( ) ) ;
ts - > printf ( cvtest : : TS : : LOG , " Calculated size is %d. \n " , calcDescriptors . cols ) ;
ts - > printf ( cvtest : : TS : : LOG , " Expected type is %d. \n " , dextractor - > descriptorType ( ) ) ;
ts - > printf ( cvtest : : TS : : LOG , " Calculated type is %d. \n " , calcDescriptors . type ( ) ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
return ;
}
// TODO read and write descriptor extractor parameters and check them
Mat validDescriptors = readDescriptors ( ) ;
if ( ! validDescriptors . empty ( ) )
compareDescriptors ( validDescriptors , calcDescriptors ) ;
else
{
if ( ! writeDescriptors ( calcDescriptors ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Descriptors can not be written. \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
}
}
else
{
ts - > printf ( cvtest : : TS : : LOG , " Compute and write keypoints. \n " ) ;
fs . open ( string ( ts - > get_data_path ( ) ) + FEATURES2D_DIR + " /keypoints.xml.gz " , FileStorage : : WRITE ) ;
if ( fs . isOpened ( ) )
{
SurfFeatureDetector fd ;
fd . detect ( img , keypoints ) ;
write ( fs , " keypoints " , keypoints ) ;
}
else
{
ts - > printf ( cvtest : : TS : : LOG , " File for writting keypoints can not be opened. \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
}
}
void run ( int )
{
createDescriptorExtractor ( ) ;
2013-08-13 15:36:38 +02:00
if ( ! dextractor )
2012-03-15 15:36:01 +01:00
{
ts - > printf ( cvtest : : TS : : LOG , " Descriptor extractor is empty. \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
emptyDataTest ( ) ;
regressionTest ( ) ;
ts - > set_failed_test_info ( cvtest : : TS : : OK ) ;
}
virtual Mat readDescriptors ( )
{
Mat res = readMatFromBin ( string ( ts - > get_data_path ( ) ) + DESCRIPTOR_DIR + " / " + string ( name ) ) ;
return res ;
}
virtual bool writeDescriptors ( Mat & descs )
{
writeMatInBin ( descs , string ( ts - > get_data_path ( ) ) + DESCRIPTOR_DIR + " / " + string ( name ) ) ;
return true ;
}
string name ;
const DistanceType maxDist ;
Ptr < DescriptorExtractor > dextractor ;
Distance distance ;
private :
CV_DescriptorExtractorTest & operator = ( const CV_DescriptorExtractorTest & ) { return * this ; }
} ;
/*template<typename T, typename Distance>
class CV_CalonderDescriptorExtractorTest : public CV_DescriptorExtractorTest < Distance >
{
public :
CV_CalonderDescriptorExtractorTest ( const char * testName , float _normDif , float _prevTime ) :
CV_DescriptorExtractorTest < Distance > ( testName , _normDif , Ptr < DescriptorExtractor > ( ) , _prevTime )
{ }
protected :
virtual void createDescriptorExtractor ( )
{
CV_DescriptorExtractorTest < Distance > : : dextractor =
new CalonderDescriptorExtractor < T > ( string ( CV_DescriptorExtractorTest < Distance > : : ts - > get_data_path ( ) ) +
FEATURES2D_DIR + " /calonder_classifier.rtc " ) ;
}
} ; */
/****************************************************************************************\
* Algorithmic tests for descriptor matchers *
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
class CV_DescriptorMatcherTest : public cvtest : : BaseTest
{
public :
CV_DescriptorMatcherTest ( const string & _name , const Ptr < DescriptorMatcher > & _dmatcher , float _badPart ) :
badPart ( _badPart ) , name ( _name ) , dmatcher ( _dmatcher )
{ }
protected :
static const int dim = 500 ;
static const int queryDescCount = 300 ; // must be even number because we split train data in some cases in two
static const int countFactor = 4 ; // do not change it
const float badPart ;
virtual void run ( int ) ;
void generateData ( Mat & query , Mat & train ) ;
void emptyDataTest ( ) ;
void matchTest ( const Mat & query , const Mat & train ) ;
void knnMatchTest ( const Mat & query , const Mat & train ) ;
void radiusMatchTest ( const Mat & query , const Mat & train ) ;
string name ;
Ptr < DescriptorMatcher > dmatcher ;
private :
CV_DescriptorMatcherTest & operator = ( const CV_DescriptorMatcherTest & ) { return * this ; }
} ;
void CV_DescriptorMatcherTest : : emptyDataTest ( )
{
assert ( ! dmatcher . empty ( ) ) ;
Mat queryDescriptors , trainDescriptors , mask ;
vector < Mat > trainDescriptorCollection , masks ;
vector < DMatch > matches ;
vector < vector < DMatch > > vmatches ;
try
{
dmatcher - > match ( queryDescriptors , trainDescriptors , matches , mask ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " match() on empty descriptors must not generate exception (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > knnMatch ( queryDescriptors , trainDescriptors , vmatches , 2 , mask ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " knnMatch() on empty descriptors must not generate exception (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > radiusMatch ( queryDescriptors , trainDescriptors , vmatches , 10.f , mask ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " radiusMatch() on empty descriptors must not generate exception (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > add ( trainDescriptorCollection ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " add() on empty descriptors must not generate exception. \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > match ( queryDescriptors , matches , masks ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " match() on empty descriptors must not generate exception (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > knnMatch ( queryDescriptors , vmatches , 2 , masks ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " knnMatch() on empty descriptors must not generate exception (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > radiusMatch ( queryDescriptors , vmatches , 10.f , masks ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " radiusMatch() on empty descriptors must not generate exception (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
void CV_DescriptorMatcherTest : : generateData ( Mat & query , Mat & train )
{
RNG & rng = theRNG ( ) ;
// Generate query descriptors randomly.
// Descriptor vector elements are integer values.
Mat buf ( queryDescCount , dim , CV_32SC1 ) ;
rng . fill ( buf , RNG : : UNIFORM , Scalar : : all ( 0 ) , Scalar ( 3 ) ) ;
buf . convertTo ( query , CV_32FC1 ) ;
// Generate train decriptors as follows:
// copy each query descriptor to train set countFactor times
// and perturb some one element of the copied descriptors in
// in ascending order. General boundaries of the perturbation
// are (0.f, 1.f).
train . create ( query . rows * countFactor , query . cols , CV_32FC1 ) ;
float step = 1.f / countFactor ;
for ( int qIdx = 0 ; qIdx < query . rows ; qIdx + + )
{
Mat queryDescriptor = query . row ( qIdx ) ;
for ( int c = 0 ; c < countFactor ; c + + )
{
int tIdx = qIdx * countFactor + c ;
Mat trainDescriptor = train . row ( tIdx ) ;
queryDescriptor . copyTo ( trainDescriptor ) ;
int elem = rng ( dim ) ;
float diff = rng . uniform ( step * c , step * ( c + 1 ) ) ;
trainDescriptor . at < float > ( 0 , elem ) + = diff ;
}
}
}
void CV_DescriptorMatcherTest : : matchTest ( const Mat & query , const Mat & train )
{
dmatcher - > clear ( ) ;
// test const version of match()
{
vector < DMatch > matches ;
dmatcher - > match ( query , train , matches ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test match() function (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
DMatch match = matches [ i ] ;
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor ) | | ( match . imgIdx ! = 0 ) )
badCount + + ;
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test match() function (1). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
}
// test version of match() with add()
{
vector < DMatch > matches ;
// make add() twice to test such case
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( 0 , train . rows / 2 ) ) ) ;
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( train . rows / 2 , train . rows ) ) ) ;
// prepare masks (make first nearest match illegal)
vector < Mat > masks ( 2 ) ;
for ( int mi = 0 ; mi < 2 ; mi + + )
{
masks [ mi ] = Mat ( query . rows , train . rows / 2 , CV_8UC1 , Scalar : : all ( 1 ) ) ;
for ( int di = 0 ; di < queryDescCount / 2 ; di + + )
masks [ mi ] . col ( di * countFactor ) . setTo ( Scalar : : all ( 0 ) ) ;
}
dmatcher - > match ( query , matches , masks ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test match() function (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
DMatch match = matches [ i ] ;
int shift = dmatcher - > isMaskSupported ( ) ? 1 : 0 ;
{
if ( i < queryDescCount / 2 )
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor + shift ) | | ( match . imgIdx ! = 0 ) )
badCount + + ;
}
else
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( ( int ) i - queryDescCount / 2 ) * countFactor + shift ) | | ( match . imgIdx ! = 1 ) )
badCount + + ;
}
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test match() function (2). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_BAD_ACCURACY ) ;
}
}
}
}
void CV_DescriptorMatcherTest : : knnMatchTest ( const Mat & query , const Mat & train )
{
dmatcher - > clear ( ) ;
// test const version of knnMatch()
{
const int knn = 3 ;
vector < vector < DMatch > > matches ;
dmatcher - > knnMatch ( query , train , matches , knn ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test knnMatch() function (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
if ( ( int ) matches [ i ] . size ( ) ! = knn )
badCount + + ;
else
{
int localBadCount = 0 ;
for ( int k = 0 ; k < knn ; k + + )
{
DMatch match = matches [ i ] [ k ] ;
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor + k ) | | ( match . imgIdx ! = 0 ) )
localBadCount + + ;
}
badCount + = localBadCount > 0 ? 1 : 0 ;
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test knnMatch() function (1). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
}
// test version of knnMatch() with add()
{
const int knn = 2 ;
vector < vector < DMatch > > matches ;
// make add() twice to test such case
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( 0 , train . rows / 2 ) ) ) ;
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( train . rows / 2 , train . rows ) ) ) ;
// prepare masks (make first nearest match illegal)
vector < Mat > masks ( 2 ) ;
for ( int mi = 0 ; mi < 2 ; mi + + )
{
masks [ mi ] = Mat ( query . rows , train . rows / 2 , CV_8UC1 , Scalar : : all ( 1 ) ) ;
for ( int di = 0 ; di < queryDescCount / 2 ; di + + )
masks [ mi ] . col ( di * countFactor ) . setTo ( Scalar : : all ( 0 ) ) ;
}
dmatcher - > knnMatch ( query , matches , knn , masks ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test knnMatch() function (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
int shift = dmatcher - > isMaskSupported ( ) ? 1 : 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
if ( ( int ) matches [ i ] . size ( ) ! = knn )
badCount + + ;
else
{
int localBadCount = 0 ;
for ( int k = 0 ; k < knn ; k + + )
{
DMatch match = matches [ i ] [ k ] ;
{
if ( i < queryDescCount / 2 )
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor + k + shift ) | |
( match . imgIdx ! = 0 ) )
localBadCount + + ;
}
else
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( ( int ) i - queryDescCount / 2 ) * countFactor + k + shift ) | |
( match . imgIdx ! = 1 ) )
localBadCount + + ;
}
}
}
badCount + = localBadCount > 0 ? 1 : 0 ;
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test knnMatch() function (2). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_BAD_ACCURACY ) ;
}
}
}
}
void CV_DescriptorMatcherTest : : radiusMatchTest ( const Mat & query , const Mat & train )
{
dmatcher - > clear ( ) ;
// test const version of match()
{
const float radius = 1.f / countFactor ;
vector < vector < DMatch > > matches ;
dmatcher - > radiusMatch ( query , train , matches , radius ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test radiusMatch() function (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
if ( ( int ) matches [ i ] . size ( ) ! = 1 )
badCount + + ;
else
{
DMatch match = matches [ i ] [ 0 ] ;
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor ) | | ( match . imgIdx ! = 0 ) )
badCount + + ;
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test radiusMatch() function (1). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
}
// test version of match() with add()
{
int n = 3 ;
const float radius = 1.f / countFactor * n ;
vector < vector < DMatch > > matches ;
// make add() twice to test such case
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( 0 , train . rows / 2 ) ) ) ;
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( train . rows / 2 , train . rows ) ) ) ;
// prepare masks (make first nearest match illegal)
vector < Mat > masks ( 2 ) ;
for ( int mi = 0 ; mi < 2 ; mi + + )
{
masks [ mi ] = Mat ( query . rows , train . rows / 2 , CV_8UC1 , Scalar : : all ( 1 ) ) ;
for ( int di = 0 ; di < queryDescCount / 2 ; di + + )
masks [ mi ] . col ( di * countFactor ) . setTo ( Scalar : : all ( 0 ) ) ;
}
dmatcher - > radiusMatch ( query , matches , radius , masks ) ;
2012-03-17 10:22:31 +01:00
//int curRes = cvtest::TS::OK;
2012-03-15 15:36:01 +01:00
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test radiusMatch() function (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
int badCount = 0 ;
int shift = dmatcher - > isMaskSupported ( ) ? 1 : 0 ;
int needMatchCount = dmatcher - > isMaskSupported ( ) ? n - 1 : n ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
if ( ( int ) matches [ i ] . size ( ) ! = needMatchCount )
badCount + + ;
else
{
int localBadCount = 0 ;
for ( int k = 0 ; k < needMatchCount ; k + + )
{
DMatch match = matches [ i ] [ k ] ;
{
if ( i < queryDescCount / 2 )
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor + k + shift ) | |
( match . imgIdx ! = 0 ) )
localBadCount + + ;
}
else
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( ( int ) i - queryDescCount / 2 ) * countFactor + k + shift ) | |
( match . imgIdx ! = 1 ) )
localBadCount + + ;
}
}
}
badCount + = localBadCount > 0 ? 1 : 0 ;
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test radiusMatch() function (2). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_BAD_ACCURACY ) ;
}
}
}
void CV_DescriptorMatcherTest : : run ( int )
{
Mat query , train ;
generateData ( query , train ) ;
matchTest ( query , train ) ;
knnMatchTest ( query , train ) ;
radiusMatchTest ( query , train ) ;
}
/****************************************************************************************\
* Tests registrations *
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Detectors
*/
TEST ( Features2d_Detector_SIFT , regression )
{
CV_FeatureDetectorTest test ( " detector-sift " , FeatureDetector : : create ( " SIFT " ) ) ;
test . safe_run ( ) ;
}
TEST ( Features2d_Detector_SURF , regression )
{
CV_FeatureDetectorTest test ( " detector-surf " , FeatureDetector : : create ( " SURF " ) ) ;
test . safe_run ( ) ;
}
/*
* Descriptors
*/
TEST ( Features2d_DescriptorExtractor_SIFT , regression )
{
CV_DescriptorExtractorTest < L2 < float > > test ( " descriptor-sift " , 0.03f ,
2012-07-02 14:44:41 +02:00
DescriptorExtractor : : create ( " SIFT " ) ) ;
2012-03-15 15:36:01 +01:00
test . safe_run ( ) ;
}
TEST ( Features2d_DescriptorExtractor_SURF , regression )
{
2012-04-30 16:33:52 +02:00
CV_DescriptorExtractorTest < L2 < float > > test ( " descriptor-surf " , 0.05f ,
2012-07-02 14:44:41 +02:00
DescriptorExtractor : : create ( " SURF " ) ) ;
2012-03-15 15:36:01 +01:00
test . safe_run ( ) ;
}
2012-04-30 16:33:52 +02:00
TEST ( Features2d_DescriptorExtractor_OpponentSIFT , regression )
2012-03-15 15:36:01 +01:00
{
CV_DescriptorExtractorTest < L2 < float > > test ( " descriptor-opponent-sift " , 0.18f ,
2012-07-02 14:44:41 +02:00
DescriptorExtractor : : create ( " OpponentSIFT " ) ) ;
2012-03-15 15:36:01 +01:00
test . safe_run ( ) ;
2012-04-30 16:33:52 +02:00
}
2012-03-15 15:36:01 +01:00
TEST ( Features2d_DescriptorExtractor_OpponentSURF , regression )
{
2012-04-30 16:33:52 +02:00
CV_DescriptorExtractorTest < L2 < float > > test ( " descriptor-opponent-surf " , 0.3f ,
2012-07-02 14:44:41 +02:00
DescriptorExtractor : : create ( " OpponentSURF " ) ) ;
2012-03-15 15:36:01 +01:00
test . safe_run ( ) ;
}
/*#if CV_SSE2
TEST ( Features2d_DescriptorExtractor_Calonder_uchar , regression )
{
CV_CalonderDescriptorExtractorTest < uchar , L2 < uchar > > test ( " descriptor-calonder-uchar " ,
std : : numeric_limits < float > : : epsilon ( ) + 1 ,
0.0132175f ) ;
test . safe_run ( ) ;
}
TEST ( Features2d_DescriptorExtractor_Calonder_float , regression )
{
CV_CalonderDescriptorExtractorTest < float , L2 < float > > test ( " descriptor-calonder-float " ,
std : : numeric_limits < float > : : epsilon ( ) ,
0.0221308f ) ;
test . safe_run ( ) ;
}
# endif* / // CV_SSE2
2012-04-13 23:50:59 +02:00
TEST ( Features2d_BruteForceDescriptorMatcher_knnMatch , regression )
{
const int sz = 100 ;
const int k = 3 ;
Ptr < DescriptorExtractor > ext = DescriptorExtractor : : create ( " SURF " ) ;
ASSERT_TRUE ( ext ! = NULL ) ;
Ptr < FeatureDetector > det = FeatureDetector : : create ( " SURF " ) ;
//"%YAML:1.0\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n"
ASSERT_TRUE ( det ! = NULL ) ;
Ptr < DescriptorMatcher > matcher = DescriptorMatcher : : create ( " BruteForce " ) ;
ASSERT_TRUE ( matcher ! = NULL ) ;
Mat imgT ( sz , sz , CV_8U , Scalar ( 255 ) ) ;
line ( imgT , Point ( 20 , sz / 2 ) , Point ( sz - 21 , sz / 2 ) , Scalar ( 100 ) , 2 ) ;
line ( imgT , Point ( sz / 2 , 20 ) , Point ( sz / 2 , sz - 21 ) , Scalar ( 100 ) , 2 ) ;
vector < KeyPoint > kpT ;
kpT . push_back ( KeyPoint ( 50 , 50 , 16 , 0 , 20000 , 1 , - 1 ) ) ;
kpT . push_back ( KeyPoint ( 42 , 42 , 16 , 160 , 10000 , 1 , - 1 ) ) ;
Mat descT ;
ext - > compute ( imgT , kpT , descT ) ;
Mat imgQ ( sz , sz , CV_8U , Scalar ( 255 ) ) ;
line ( imgQ , Point ( 30 , sz / 2 ) , Point ( sz - 31 , sz / 2 ) , Scalar ( 100 ) , 3 ) ;
line ( imgQ , Point ( sz / 2 , 30 ) , Point ( sz / 2 , sz - 31 ) , Scalar ( 100 ) , 3 ) ;
vector < KeyPoint > kpQ ;
det - > detect ( imgQ , kpQ ) ;
Mat descQ ;
ext - > compute ( imgQ , kpQ , descQ ) ;
vector < vector < DMatch > > matches ;
matcher - > knnMatch ( descQ , descT , matches , k ) ;
//cout << "\nBest " << k << " matches to " << descT.rows << " train desc-s." << endl;
2012-04-30 16:33:52 +02:00
ASSERT_EQ ( descQ . rows , static_cast < int > ( matches . size ( ) ) ) ;
2012-04-13 23:50:59 +02:00
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
//cout << "\nmatches[" << i << "].size()==" << matches[i].size() << endl;
2012-04-30 16:33:52 +02:00
ASSERT_GE ( min ( k , descT . rows ) , static_cast < int > ( matches [ i ] . size ( ) ) ) ;
2012-04-13 23:50:59 +02:00
for ( size_t j = 0 ; j < matches [ i ] . size ( ) ; j + + )
{
//cout << "\t" << matches[i][j].queryIdx << " -> " << matches[i][j].trainIdx << endl;
ASSERT_EQ ( matches [ i ] [ j ] . queryIdx , static_cast < int > ( i ) ) ;
}
}
}
2012-09-11 14:47:25 +02:00
/*TEST(Features2d_DescriptorExtractorParamTest, regression)
{
Ptr < DescriptorExtractor > s = DescriptorExtractor : : create ( " SURF " ) ;
ASSERT_STREQ ( s - > paramHelp ( " extended " ) . c_str ( ) , " " ) ;
}
2013-01-29 16:38:56 +01:00
*/
class CV_DetectPlanarTest : public cvtest : : BaseTest
{
public :
CV_DetectPlanarTest ( const string & _fname , int _min_ninliers ) : fname ( _fname ) , min_ninliers ( _min_ninliers ) { }
protected :
void run ( int )
{
Ptr < Feature2D > f = Algorithm : : create < Feature2D > ( " Feature2D. " + fname ) ;
2013-08-13 15:36:38 +02:00
if ( ! f )
2013-01-29 16:38:56 +01:00
return ;
string path = string ( ts - > get_data_path ( ) ) + " detectors_descriptors_evaluation/planar/ " ;
string imgname1 = path + " box.png " ;
string imgname2 = path + " box_in_scene.png " ;
Mat img1 = imread ( imgname1 , 0 ) ;
Mat img2 = imread ( imgname2 , 0 ) ;
if ( img1 . empty ( ) | | img2 . empty ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " missing %s and/or %s \n " , imgname1 . c_str ( ) , imgname2 . c_str ( ) ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
vector < KeyPoint > kpt1 , kpt2 ;
Mat d1 , d2 ;
f - > operator ( ) ( img1 , Mat ( ) , kpt1 , d1 ) ;
f - > operator ( ) ( img1 , Mat ( ) , kpt2 , d2 ) ;
2013-01-30 15:07:37 +01:00
for ( size_t i = 0 ; i < kpt1 . size ( ) ; i + + )
CV_Assert ( kpt1 [ i ] . response > 0 ) ;
for ( size_t i = 0 ; i < kpt2 . size ( ) ; i + + )
CV_Assert ( kpt2 [ i ] . response > 0 ) ;
2013-01-29 16:38:56 +01:00
vector < DMatch > matches ;
BFMatcher ( NORM_L2 , true ) . match ( d1 , d2 , matches ) ;
vector < Point2f > pt1 , pt2 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + ) {
pt1 . push_back ( kpt1 [ matches [ i ] . queryIdx ] . pt ) ;
pt2 . push_back ( kpt2 [ matches [ i ] . trainIdx ] . pt ) ;
}
Mat inliers , H = findHomography ( pt1 , pt2 , RANSAC , 10 , inliers ) ;
int ninliers = countNonZero ( inliers ) ;
if ( ninliers < min_ninliers )
{
ts - > printf ( cvtest : : TS : : LOG , " too little inliers (%d) vs expected %d \n " , ninliers , min_ninliers ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
}
string fname ;
int min_ninliers ;
} ;
TEST ( Features2d_SIFTHomographyTest , regression ) { CV_DetectPlanarTest test ( " SIFT " , 80 ) ; test . safe_run ( ) ; }
2013-01-30 15:07:37 +01:00
TEST ( Features2d_SURFHomographyTest , regression ) { CV_DetectPlanarTest test ( " SURF " , 80 ) ; test . safe_run ( ) ; }
2013-01-29 16:38:56 +01:00
2013-06-14 15:03:15 +02:00
class FeatureDetectorUsingMaskTest : public cvtest : : BaseTest
{
public :
FeatureDetectorUsingMaskTest ( const Ptr < FeatureDetector > & featureDetector ) :
featureDetector_ ( featureDetector )
{
2013-08-13 15:36:38 +02:00
CV_Assert ( featureDetector_ ) ;
2013-06-14 15:03:15 +02:00
}
protected :
void run ( int )
{
const int nStepX = 2 ;
const int nStepY = 2 ;
const string imageFilename = string ( ts - > get_data_path ( ) ) + " /features2d/tsukuba.png " ;
Mat image = imread ( imageFilename ) ;
if ( image . empty ( ) )
{
ts - > printf ( cvtest : : TS : : LOG , " Image %s can not be read. \n " , imageFilename . c_str ( ) ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_TEST_DATA ) ;
return ;
}
Mat mask ( image . size ( ) , CV_8U ) ;
const int stepX = image . size ( ) . width / nStepX ;
const int stepY = image . size ( ) . height / nStepY ;
vector < KeyPoint > keyPoints ;
vector < Point2f > points ;
for ( int i = 0 ; i < nStepX ; + + i )
for ( int j = 0 ; j < nStepY ; + + j )
{
mask . setTo ( 0 ) ;
Rect whiteArea ( i * stepX , j * stepY , stepX , stepY ) ;
mask ( whiteArea ) . setTo ( 255 ) ;
featureDetector_ - > detect ( image , keyPoints , mask ) ;
KeyPoint : : convert ( keyPoints , points ) ;
for ( size_t k = 0 ; k < points . size ( ) ; + + k )
{
if ( ! whiteArea . contains ( points [ k ] ) )
{
ts - > printf ( cvtest : : TS : : LOG , " The feature point is outside of the mask. " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
return ;
}
}
}
ts - > set_failed_test_info ( cvtest : : TS : : OK ) ;
}
Ptr < FeatureDetector > featureDetector_ ;
} ;
TEST ( Features2d_SIFT_using_mask , regression )
{
FeatureDetectorUsingMaskTest test ( Algorithm : : create < FeatureDetector > ( " Feature2D.SIFT " ) ) ;
test . safe_run ( ) ;
}
TEST ( DISABLED_Features2d_SURF_using_mask , regression )
{
FeatureDetectorUsingMaskTest test ( Algorithm : : create < FeatureDetector > ( " Feature2D.SURF " ) ) ;
test . safe_run ( ) ;
}