2010-05-11 19:44:00 +02:00
|
|
|
/***********************************************************************
|
|
|
|
* Software License Agreement (BSD License)
|
|
|
|
*
|
|
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
|
|
*
|
|
|
|
* THE BSD LICENSE
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*************************************************************************/
|
|
|
|
|
|
|
|
#ifndef AUTOTUNEDINDEX_H_
|
|
|
|
#define AUTOTUNEDINDEX_H_
|
|
|
|
|
|
|
|
#include "constants.h"
|
|
|
|
#include "nn_index.h"
|
|
|
|
#include "ground_truth.h"
|
|
|
|
#include "index_testing.h"
|
|
|
|
|
2010-05-21 22:37:05 +02:00
|
|
|
namespace cvflann
|
2010-05-11 19:44:00 +02:00
|
|
|
{
|
|
|
|
|
|
|
|
class AutotunedIndex : public NNIndex
|
|
|
|
{
|
|
|
|
NNIndex* bestIndex;
|
|
|
|
IndexParams* bestParams;
|
|
|
|
SearchParams bestSearchParams;
|
|
|
|
|
|
|
|
Matrix<float>* sampledDataset;
|
|
|
|
Matrix<float>* testDataset;
|
|
|
|
Matrix<int>* gt_matches;
|
|
|
|
|
|
|
|
float speedup;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The dataset used by this index
|
|
|
|
*/
|
|
|
|
const Matrix<float> dataset;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Index parameters
|
|
|
|
*/
|
|
|
|
const AutotunedIndexParams& params;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Number of features in the dataset.
|
|
|
|
*/
|
|
|
|
int size_;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Length of each feature.
|
|
|
|
*/
|
|
|
|
int veclen_;
|
|
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
AutotunedIndex(const Matrix<float>& inputData, const AutotunedIndexParams& params_ = AutotunedIndexParams() ) :
|
|
|
|
dataset(inputData), params(params_)
|
|
|
|
{
|
|
|
|
size_ = dataset.rows;
|
|
|
|
veclen_ = dataset.cols;
|
|
|
|
|
|
|
|
bestIndex = NULL;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual ~AutotunedIndex()
|
|
|
|
{
|
|
|
|
delete bestIndex;
|
|
|
|
delete bestParams;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
Method responsible with building the index.
|
|
|
|
*/
|
|
|
|
virtual void buildIndex()
|
|
|
|
{
|
|
|
|
bestParams = estimateBuildParams();
|
|
|
|
bestIndex = bestParams->createIndex(dataset);
|
|
|
|
bestIndex->buildIndex();
|
|
|
|
speedup = estimateSearchParams(bestSearchParams);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Saves the index to a stream
|
|
|
|
*/
|
|
|
|
virtual void saveIndex(FILE* stream)
|
|
|
|
{
|
|
|
|
bestIndex->saveIndex(stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Loads the index from a stream
|
|
|
|
*/
|
|
|
|
virtual void loadIndex(FILE* stream)
|
|
|
|
{
|
|
|
|
bestIndex->loadIndex(stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Method that searches for nearest-neighbors
|
|
|
|
*/
|
|
|
|
virtual void findNeighbors(ResultSet& result, const float* vec, const SearchParams& /*searchParams*/)
|
|
|
|
{
|
|
|
|
bestIndex->findNeighbors(result, vec, bestSearchParams);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Number of features in this index.
|
|
|
|
*/
|
|
|
|
virtual int size() const
|
|
|
|
{
|
|
|
|
return bestIndex->size();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
The length of each vector in this index.
|
|
|
|
*/
|
|
|
|
virtual int veclen() const
|
|
|
|
{
|
|
|
|
return bestIndex->veclen();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
The amount of memory (in bytes) this index uses.
|
|
|
|
*/
|
|
|
|
virtual int usedMemory() const
|
|
|
|
{
|
|
|
|
return bestIndex->usedMemory();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Algorithm name
|
|
|
|
*/
|
|
|
|
virtual flann_algorithm_t getType() const
|
|
|
|
{
|
|
|
|
return bestIndex->getType();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Estimates the search parameters required in order to get a certain precision.
|
|
|
|
If testset is not given it uses cross-validation.
|
|
|
|
*/
|
|
|
|
// virtual Params estimateSearchParams(float precision, Dataset<float>* testset = NULL)
|
|
|
|
// {
|
|
|
|
// Params params;
|
|
|
|
//
|
|
|
|
// return params;
|
|
|
|
// }
|
|
|
|
private:
|
|
|
|
|
|
|
|
struct CostData {
|
|
|
|
float searchTimeCost;
|
|
|
|
float buildTimeCost;
|
|
|
|
float timeCost;
|
|
|
|
float memoryCost;
|
|
|
|
float totalCost;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef pair<CostData, KDTreeIndexParams> KDTreeCostData;
|
|
|
|
typedef pair<CostData, KMeansIndexParams> KMeansCostData;
|
|
|
|
|
|
|
|
|
|
|
|
void evaluate_kmeans(CostData& cost, const KMeansIndexParams& kmeans_params)
|
|
|
|
{
|
|
|
|
StartStopTimer t;
|
|
|
|
int checks;
|
|
|
|
const int nn = 1;
|
|
|
|
|
|
|
|
logger.info("KMeansTree using params: max_iterations=%d, branching=%d\n", kmeans_params.iterations, kmeans_params.branching);
|
|
|
|
KMeansIndex kmeans(*sampledDataset, kmeans_params);
|
|
|
|
// measure index build time
|
|
|
|
t.start();
|
|
|
|
kmeans.buildIndex();
|
|
|
|
t.stop();
|
|
|
|
float buildTime = (float)t.value;
|
|
|
|
|
|
|
|
// measure search time
|
|
|
|
float searchTime = test_index_precision(kmeans, *sampledDataset, *testDataset, *gt_matches, params.target_precision, checks, nn);;
|
|
|
|
|
|
|
|
float datasetMemory = (float)(sampledDataset->rows*sampledDataset->cols*sizeof(float));
|
|
|
|
cost.memoryCost = (kmeans.usedMemory()+datasetMemory)/datasetMemory;
|
|
|
|
cost.searchTimeCost = searchTime;
|
|
|
|
cost.buildTimeCost = buildTime;
|
|
|
|
cost.timeCost = (buildTime*params.build_weight+searchTime);
|
|
|
|
logger.info("KMeansTree buildTime=%g, searchTime=%g, timeCost=%g, buildTimeFactor=%g\n",buildTime, searchTime, cost.timeCost, params.build_weight);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void evaluate_kdtree(CostData& cost, const KDTreeIndexParams& kdtree_params)
|
|
|
|
{
|
|
|
|
StartStopTimer t;
|
|
|
|
int checks;
|
|
|
|
const int nn = 1;
|
|
|
|
|
|
|
|
logger.info("KDTree using params: trees=%d\n",kdtree_params.trees);
|
|
|
|
KDTreeIndex kdtree(*sampledDataset, kdtree_params);
|
|
|
|
|
|
|
|
t.start();
|
|
|
|
kdtree.buildIndex();
|
|
|
|
t.stop();
|
|
|
|
float buildTime = (float)t.value;
|
|
|
|
|
|
|
|
//measure search time
|
|
|
|
float searchTime = test_index_precision(kdtree, *sampledDataset, *testDataset, *gt_matches, params.target_precision, checks, nn);
|
|
|
|
|
|
|
|
float datasetMemory = (float)(sampledDataset->rows*sampledDataset->cols*sizeof(float));
|
|
|
|
cost.memoryCost = (kdtree.usedMemory()+datasetMemory)/datasetMemory;
|
|
|
|
cost.searchTimeCost = searchTime;
|
|
|
|
cost.buildTimeCost = buildTime;
|
|
|
|
cost.timeCost = (buildTime*params.build_weight+searchTime);
|
|
|
|
logger.info("KDTree buildTime=%g, searchTime=%g, timeCost=%g\n",buildTime, searchTime, cost.timeCost);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// struct KMeansSimpleDownhillFunctor {
|
|
|
|
//
|
|
|
|
// Autotune& autotuner;
|
|
|
|
// KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
|
|
|
|
//
|
|
|
|
// float operator()(int* params) {
|
|
|
|
//
|
|
|
|
// float maxFloat = numeric_limits<float>::max();
|
|
|
|
//
|
|
|
|
// if (params[0]<2) return maxFloat;
|
|
|
|
// if (params[1]<0) return maxFloat;
|
|
|
|
//
|
|
|
|
// CostData c;
|
|
|
|
// c.params["algorithm"] = KMEANS;
|
|
|
|
// c.params["centers-init"] = CENTERS_RANDOM;
|
|
|
|
// c.params["branching"] = params[0];
|
|
|
|
// c.params["max-iterations"] = params[1];
|
|
|
|
//
|
|
|
|
// autotuner.evaluate_kmeans(c);
|
|
|
|
//
|
|
|
|
// return c.timeCost;
|
|
|
|
//
|
|
|
|
// }
|
|
|
|
// };
|
|
|
|
//
|
|
|
|
// struct KDTreeSimpleDownhillFunctor {
|
|
|
|
//
|
|
|
|
// Autotune& autotuner;
|
|
|
|
// KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
|
|
|
|
//
|
|
|
|
// float operator()(int* params) {
|
|
|
|
// float maxFloat = numeric_limits<float>::max();
|
|
|
|
//
|
|
|
|
// if (params[0]<1) return maxFloat;
|
|
|
|
//
|
|
|
|
// CostData c;
|
|
|
|
// c.params["algorithm"] = KDTREE;
|
|
|
|
// c.params["trees"] = params[0];
|
|
|
|
//
|
|
|
|
// autotuner.evaluate_kdtree(c);
|
|
|
|
//
|
|
|
|
// return c.timeCost;
|
|
|
|
//
|
|
|
|
// }
|
|
|
|
// };
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KMeansCostData optimizeKMeans()
|
|
|
|
{
|
|
|
|
logger.info("KMEANS, Step 1: Exploring parameter space\n");
|
|
|
|
|
|
|
|
// explore kmeans parameters space using combinations of the parameters below
|
|
|
|
int maxIterations[] = { 1, 5, 10, 15 };
|
|
|
|
int branchingFactors[] = { 16, 32, 64, 128, 256 };
|
|
|
|
|
|
|
|
int kmeansParamSpaceSize = ARRAY_LEN(maxIterations)*ARRAY_LEN(branchingFactors);
|
|
|
|
|
|
|
|
vector<KMeansCostData> kmeansCosts(kmeansParamSpaceSize);
|
|
|
|
|
|
|
|
// CostData* kmeansCosts = new CostData[kmeansParamSpaceSize];
|
|
|
|
|
|
|
|
// evaluate kmeans for all parameter combinations
|
|
|
|
int cnt = 0;
|
|
|
|
for (size_t i=0; i<ARRAY_LEN(maxIterations); ++i) {
|
|
|
|
for (size_t j=0; j<ARRAY_LEN(branchingFactors); ++j) {
|
|
|
|
|
|
|
|
kmeansCosts[cnt].second.centers_init = CENTERS_RANDOM;
|
|
|
|
kmeansCosts[cnt].second.branching = branchingFactors[j];
|
|
|
|
kmeansCosts[cnt].second.iterations = maxIterations[j];
|
|
|
|
|
|
|
|
evaluate_kmeans(kmeansCosts[cnt].first, kmeansCosts[cnt].second);
|
|
|
|
|
|
|
|
int k = cnt;
|
|
|
|
// order by time cost
|
|
|
|
while (k>0 && kmeansCosts[k].first.timeCost < kmeansCosts[k-1].first.timeCost) {
|
|
|
|
swap(kmeansCosts[k],kmeansCosts[k-1]);
|
|
|
|
--k;
|
|
|
|
}
|
|
|
|
++cnt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// logger.info("KMEANS, Step 2: simplex-downhill optimization\n");
|
|
|
|
//
|
|
|
|
// const int n = 2;
|
|
|
|
// // choose initial simplex points as the best parameters so far
|
|
|
|
// int kmeansNMPoints[n*(n+1)];
|
|
|
|
// float kmeansVals[n+1];
|
|
|
|
// for (int i=0;i<n+1;++i) {
|
|
|
|
// kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
|
|
|
|
// kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
|
|
|
|
// kmeansVals[i] = kmeansCosts[i].timeCost;
|
|
|
|
// }
|
|
|
|
// KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
|
|
|
|
// // run optimization
|
|
|
|
// optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
|
|
|
|
// // store results
|
|
|
|
// for (int i=0;i<n+1;++i) {
|
|
|
|
// kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
|
|
|
|
// kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
|
|
|
|
// kmeansCosts[i].timeCost = kmeansVals[i];
|
|
|
|
// }
|
|
|
|
|
|
|
|
float optTimeCost = kmeansCosts[0].first.timeCost;
|
|
|
|
// recompute total costs factoring in the memory costs
|
|
|
|
for (int i=0;i<kmeansParamSpaceSize;++i) {
|
|
|
|
kmeansCosts[i].first.totalCost = (kmeansCosts[i].first.timeCost/optTimeCost + params.memory_weight * kmeansCosts[i].first.memoryCost);
|
|
|
|
|
|
|
|
int k = i;
|
|
|
|
while (k>0 && kmeansCosts[k].first.totalCost < kmeansCosts[k-1].first.totalCost) {
|
|
|
|
swap(kmeansCosts[k],kmeansCosts[k-1]);
|
|
|
|
k--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// display the costs obtained
|
|
|
|
for (int i=0;i<kmeansParamSpaceSize;++i) {
|
|
|
|
logger.info("KMeans, branching=%d, iterations=%d, time_cost=%g[%g] (build=%g, search=%g), memory_cost=%g, cost=%g\n",
|
|
|
|
kmeansCosts[i].second.branching, kmeansCosts[i].second.iterations,
|
|
|
|
kmeansCosts[i].first.timeCost,kmeansCosts[i].first.timeCost/optTimeCost,
|
|
|
|
kmeansCosts[i].first.buildTimeCost, kmeansCosts[i].first.searchTimeCost,
|
|
|
|
kmeansCosts[i].first.memoryCost,kmeansCosts[i].first.totalCost);
|
|
|
|
}
|
|
|
|
|
|
|
|
return kmeansCosts[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
KDTreeCostData optimizeKDTree()
|
|
|
|
{
|
|
|
|
|
|
|
|
logger.info("KD-TREE, Step 1: Exploring parameter space\n");
|
|
|
|
|
|
|
|
// explore kd-tree parameters space using the parameters below
|
|
|
|
int testTrees[] = { 1, 4, 8, 16, 32 };
|
|
|
|
|
|
|
|
size_t kdtreeParamSpaceSize = ARRAY_LEN(testTrees);
|
|
|
|
vector<KDTreeCostData> kdtreeCosts(kdtreeParamSpaceSize);
|
|
|
|
|
|
|
|
// evaluate kdtree for all parameter combinations
|
|
|
|
int cnt = 0;
|
|
|
|
for (size_t i=0; i<ARRAY_LEN(testTrees); ++i) {
|
|
|
|
kdtreeCosts[cnt].second.trees = testTrees[i];
|
|
|
|
|
|
|
|
evaluate_kdtree(kdtreeCosts[cnt].first, kdtreeCosts[cnt].second);
|
|
|
|
|
|
|
|
int k = cnt;
|
|
|
|
// order by time cost
|
|
|
|
while (k>0 && kdtreeCosts[k].first.timeCost < kdtreeCosts[k-1].first.timeCost) {
|
|
|
|
swap(kdtreeCosts[k],kdtreeCosts[k-1]);
|
|
|
|
--k;
|
|
|
|
}
|
|
|
|
++cnt;
|
|
|
|
}
|
|
|
|
|
|
|
|
// logger.info("KD-TREE, Step 2: simplex-downhill optimization\n");
|
|
|
|
//
|
|
|
|
// const int n = 1;
|
|
|
|
// // choose initial simplex points as the best parameters so far
|
|
|
|
// int kdtreeNMPoints[n*(n+1)];
|
|
|
|
// float kdtreeVals[n+1];
|
|
|
|
// for (int i=0;i<n+1;++i) {
|
|
|
|
// kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
|
|
|
|
// kdtreeVals[i] = kdtreeCosts[i].timeCost;
|
|
|
|
// }
|
|
|
|
// KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
|
|
|
|
// // run optimization
|
|
|
|
// optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
|
|
|
|
// // store results
|
|
|
|
// for (int i=0;i<n+1;++i) {
|
|
|
|
// kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
|
|
|
|
// kdtreeCosts[i].timeCost = kdtreeVals[i];
|
|
|
|
// }
|
|
|
|
|
|
|
|
float optTimeCost = kdtreeCosts[0].first.timeCost;
|
|
|
|
// recompute costs for kd-tree factoring in memory cost
|
|
|
|
for (size_t i=0;i<kdtreeParamSpaceSize;++i) {
|
|
|
|
kdtreeCosts[i].first.totalCost = (kdtreeCosts[i].first.timeCost/optTimeCost + params.memory_weight * kdtreeCosts[i].first.memoryCost);
|
|
|
|
|
|
|
|
int k = i;
|
|
|
|
while (k>0 && kdtreeCosts[k].first.totalCost < kdtreeCosts[k-1].first.totalCost) {
|
|
|
|
swap(kdtreeCosts[k],kdtreeCosts[k-1]);
|
|
|
|
k--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// display costs obtained
|
|
|
|
for (size_t i=0;i<kdtreeParamSpaceSize;++i) {
|
|
|
|
logger.info("kd-tree, trees=%d, time_cost=%g[%g] (build=%g, search=%g), memory_cost=%g, cost=%g\n",
|
|
|
|
kdtreeCosts[i].second.trees,kdtreeCosts[i].first.timeCost,kdtreeCosts[i].first.timeCost/optTimeCost,
|
|
|
|
kdtreeCosts[i].first.buildTimeCost, kdtreeCosts[i].first.searchTimeCost,
|
|
|
|
kdtreeCosts[i].first.memoryCost,kdtreeCosts[i].first.totalCost);
|
|
|
|
}
|
|
|
|
|
|
|
|
return kdtreeCosts[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Chooses the best nearest-neighbor algorithm and estimates the optimal
|
|
|
|
parameters to use when building the index (for a given precision).
|
|
|
|
Returns a dictionary with the optimal parameters.
|
|
|
|
*/
|
|
|
|
IndexParams* estimateBuildParams()
|
|
|
|
{
|
|
|
|
int sampleSize = int(params.sample_fraction*dataset.rows);
|
|
|
|
int testSampleSize = min(sampleSize/10, 1000);
|
|
|
|
|
|
|
|
logger.info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d\n",dataset.rows, sampleSize, testSampleSize);
|
|
|
|
|
|
|
|
// For a very small dataset, it makes no sense to build any fancy index, just
|
|
|
|
// use linear search
|
|
|
|
if (testSampleSize<10) {
|
|
|
|
logger.info("Choosing linear, dataset too small\n");
|
|
|
|
return new LinearIndexParams();
|
|
|
|
}
|
|
|
|
|
|
|
|
// We use a fraction of the original dataset to speedup the autotune algorithm
|
|
|
|
sampledDataset = dataset.sample(sampleSize);
|
|
|
|
// We use a cross-validation approach, first we sample a testset from the dataset
|
|
|
|
testDataset = sampledDataset->sample(testSampleSize,true);
|
|
|
|
|
|
|
|
// We compute the ground truth using linear search
|
|
|
|
logger.info("Computing ground truth... \n");
|
|
|
|
gt_matches = new Matrix<int>(testDataset->rows, 1);
|
|
|
|
StartStopTimer t;
|
|
|
|
t.start();
|
|
|
|
compute_ground_truth(*sampledDataset, *testDataset, *gt_matches, 0);
|
|
|
|
t.stop();
|
|
|
|
float bestCost = (float)t.value;
|
|
|
|
IndexParams* bestParams = new LinearIndexParams();
|
|
|
|
|
|
|
|
// Start parameter autotune process
|
|
|
|
logger.info("Autotuning parameters...\n");
|
|
|
|
|
|
|
|
|
|
|
|
KMeansCostData kmeansCost = optimizeKMeans();
|
|
|
|
|
|
|
|
if (kmeansCost.first.totalCost<bestCost) {
|
|
|
|
bestParams = new KMeansIndexParams(kmeansCost.second);
|
|
|
|
bestCost = kmeansCost.first.totalCost;
|
|
|
|
}
|
|
|
|
|
|
|
|
KDTreeCostData kdtreeCost = optimizeKDTree();
|
|
|
|
|
|
|
|
if (kdtreeCost.first.totalCost<bestCost) {
|
|
|
|
bestParams = new KDTreeIndexParams(kdtreeCost.second);
|
|
|
|
bestCost = kdtreeCost.first.totalCost;
|
|
|
|
}
|
|
|
|
|
|
|
|
// free the memory used by the datasets we sampled
|
|
|
|
delete sampledDataset;
|
|
|
|
delete testDataset;
|
|
|
|
delete gt_matches;
|
|
|
|
|
|
|
|
return bestParams;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Estimates the search time parameters needed to get the desired precision.
|
|
|
|
Precondition: the index is built
|
|
|
|
Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
|
|
|
|
*/
|
|
|
|
float estimateSearchParams(SearchParams& searchParams)
|
|
|
|
{
|
|
|
|
const int nn = 1;
|
|
|
|
const long SAMPLE_COUNT = 1000;
|
|
|
|
|
|
|
|
assert(bestIndex!=NULL); // must have a valid index
|
|
|
|
|
|
|
|
float speedup = 0;
|
|
|
|
|
|
|
|
int samples = min(dataset.rows/10, SAMPLE_COUNT);
|
|
|
|
if (samples>0) {
|
|
|
|
Matrix<float>* testDataset = dataset.sample(samples);
|
|
|
|
|
|
|
|
logger.info("Computing ground truth\n");
|
|
|
|
|
|
|
|
// we need to compute the ground truth first
|
|
|
|
Matrix<int> gt_matches(testDataset->rows,1);
|
|
|
|
StartStopTimer t;
|
|
|
|
t.start();
|
|
|
|
compute_ground_truth(dataset, *testDataset, gt_matches,1);
|
|
|
|
t.stop();
|
|
|
|
float linear = (float)t.value;
|
|
|
|
|
|
|
|
int checks;
|
|
|
|
logger.info("Estimating number of checks\n");
|
|
|
|
|
|
|
|
float searchTime;
|
|
|
|
float cb_index;
|
|
|
|
if (bestIndex->getType() == KMEANS) {
|
|
|
|
|
|
|
|
logger.info("KMeans algorithm, estimating cluster border factor\n");
|
|
|
|
KMeansIndex* kmeans = (KMeansIndex*)bestIndex;
|
|
|
|
float bestSearchTime = -1;
|
|
|
|
float best_cb_index = -1;
|
|
|
|
int best_checks = -1;
|
|
|
|
for (cb_index = 0;cb_index<1.1f; cb_index+=0.2f) {
|
|
|
|
kmeans->set_cb_index(cb_index);
|
|
|
|
searchTime = test_index_precision(*kmeans, dataset, *testDataset, gt_matches, params.target_precision, checks, nn, 1);
|
|
|
|
if (searchTime<bestSearchTime || bestSearchTime == -1) {
|
|
|
|
bestSearchTime = searchTime;
|
|
|
|
best_cb_index = cb_index;
|
|
|
|
best_checks = checks;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
searchTime = bestSearchTime;
|
|
|
|
cb_index = best_cb_index;
|
|
|
|
checks = best_checks;
|
|
|
|
|
|
|
|
kmeans->set_cb_index(best_cb_index);
|
|
|
|
logger.info("Optimum cb_index: %g\n",cb_index);
|
|
|
|
((KMeansIndexParams*)bestParams)->cb_index = cb_index;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
searchTime = test_index_precision(*bestIndex, dataset, *testDataset, gt_matches, params.target_precision, checks, nn, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
logger.info("Required number of checks: %d \n",checks);;
|
|
|
|
searchParams.checks = checks;
|
|
|
|
delete testDataset;
|
|
|
|
|
|
|
|
speedup = linear/searchTime;
|
|
|
|
}
|
|
|
|
|
|
|
|
return speedup;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* AUTOTUNEDINDEX_H_ */
|