opencv/modules/core/test/test_ds.cpp

2123 lines
76 KiB
C++
Raw Normal View History

#include "test_precomp.hpp"
using namespace cv;
using namespace std;
typedef struct CvTsSimpleSeq
{
schar* array;
int count;
int max_count;
int elem_size;
} CvTsSimpleSeq;
static CvTsSimpleSeq* cvTsCreateSimpleSeq( int max_count, int elem_size )
{
CvTsSimpleSeq* seq = (CvTsSimpleSeq*)cvAlloc( sizeof(*seq) + max_count * elem_size );
seq->elem_size = elem_size;
seq->max_count = max_count;
seq->count = 0;
seq->array = (schar*)(seq + 1);
return seq;
}
static void cvTsReleaseSimpleSeq( CvTsSimpleSeq** seq )
{
cvFree( seq );
}
static schar* cvTsSimpleSeqElem( CvTsSimpleSeq* seq, int index )
{
assert( 0 <= index && index < seq->count );
return seq->array + index * seq->elem_size;
}
static void cvTsClearSimpleSeq( CvTsSimpleSeq* seq )
{
seq->count = 0;
}
static void cvTsSimpleSeqShiftAndCopy( CvTsSimpleSeq* seq, int from_idx, int to_idx, void* elem=0 )
{
int elem_size = seq->elem_size;
if( from_idx == to_idx )
return;
assert( (from_idx > to_idx && !elem) || (from_idx < to_idx && elem) );
if( from_idx < seq->count )
{
memmove( seq->array + to_idx*elem_size, seq->array + from_idx*elem_size,
(seq->count - from_idx)*elem_size );
}
seq->count += to_idx - from_idx;
if( elem && to_idx > from_idx )
memcpy( seq->array + from_idx*elem_size, elem, (to_idx - from_idx)*elem_size );
}
static void cvTsSimpleSeqInvert( CvTsSimpleSeq* seq )
{
int i, k, len = seq->count, elem_size = seq->elem_size;
schar *data = seq->array, t;
for( i = 0; i < len/2; i++ )
{
schar* a = data + i*elem_size;
schar* b = data + (len - i - 1)*elem_size;
for( k = 0; k < elem_size; k++ )
CV_SWAP( a[k], b[k], t );
}
}
/****************************************************************************************\
* simple cvset implementation *
\****************************************************************************************/
typedef struct CvTsSimpleSet
{
schar* array;
int count, max_count;
int elem_size;
int* free_stack;
int free_count;
} CvTsSimpleSet;
static void cvTsClearSimpleSet( CvTsSimpleSet* set_header )
{
int i;
int elem_size = set_header->elem_size;
for( i = 0; i < set_header->max_count; i++ )
{
set_header->array[i*elem_size] = 0;
set_header->free_stack[i] = set_header->max_count - i - 1;
}
set_header->free_count = set_header->max_count;
set_header->count = 0;
}
static CvTsSimpleSet* cvTsCreateSimpleSet( int max_count, int elem_size )
{
CvTsSimpleSet* set_header = (CvTsSimpleSet*)cvAlloc( sizeof(*set_header) + max_count *
(elem_size + 1 + sizeof(int)));
set_header->elem_size = elem_size + 1;
set_header->max_count = max_count;
set_header->free_stack = (int*)(set_header + 1);
set_header->array = (schar*)(set_header->free_stack + max_count);
cvTsClearSimpleSet( set_header );
return set_header;
}
static void cvTsReleaseSimpleSet( CvTsSimpleSet** set_header )
{
cvFree( set_header );
}
static schar* cvTsSimpleSetFind( CvTsSimpleSet* set_header, int index )
{
int idx = index * set_header->elem_size;
assert( 0 <= index && index < set_header->max_count );
return set_header->array[idx] ? set_header->array + idx + 1 : 0;
}
static int cvTsSimpleSetAdd( CvTsSimpleSet* set_header, void* elem )
{
int idx, idx2;
assert( set_header->free_count > 0 );
idx = set_header->free_stack[--set_header->free_count];
idx2 = idx * set_header->elem_size;
assert( set_header->array[idx2] == 0 );
set_header->array[idx2] = 1;
if( set_header->elem_size > 1 )
memcpy( set_header->array + idx2 + 1, elem, set_header->elem_size - 1 );
set_header->count = MAX( set_header->count, idx + 1 );
return idx;
}
static void cvTsSimpleSetRemove( CvTsSimpleSet* set_header, int index )
{
assert( set_header->free_count < set_header->max_count &&
0 <= index && index < set_header->max_count );
assert( set_header->array[index * set_header->elem_size] == 1 );
set_header->free_stack[set_header->free_count++] = index;
set_header->array[index * set_header->elem_size] = 0;
}
/****************************************************************************************\
* simple graph implementation *
\****************************************************************************************/
typedef struct CvTsSimpleGraph
{
char* matrix;
int edge_size;
int oriented;
CvTsSimpleSet* vtx;
} CvTsSimpleGraph;
static void cvTsClearSimpleGraph( CvTsSimpleGraph* graph )
{
int max_vtx_count = graph->vtx->max_count;
cvTsClearSimpleSet( graph->vtx );
memset( graph->matrix, 0, max_vtx_count * max_vtx_count * graph->edge_size );
}
static CvTsSimpleGraph* cvTsCreateSimpleGraph( int max_vtx_count, int vtx_size,
int edge_size, int oriented )
{
CvTsSimpleGraph* graph;
assert( max_vtx_count > 1 && vtx_size >= 0 && edge_size >= 0 );
graph = (CvTsSimpleGraph*)cvAlloc( sizeof(*graph) +
max_vtx_count * max_vtx_count * (edge_size + 1));
graph->vtx = cvTsCreateSimpleSet( max_vtx_count, vtx_size );
graph->edge_size = edge_size + 1;
graph->matrix = (char*)(graph + 1);
graph->oriented = oriented;
cvTsClearSimpleGraph( graph );
return graph;
}
static void cvTsReleaseSimpleGraph( CvTsSimpleGraph** graph )
{
if( *graph )
{
cvTsReleaseSimpleSet( &(graph[0]->vtx) );
cvFree( graph );
}
}
static int cvTsSimpleGraphAddVertex( CvTsSimpleGraph* graph, void* vertex )
{
return cvTsSimpleSetAdd( graph->vtx, vertex );
}
static void cvTsSimpleGraphRemoveVertex( CvTsSimpleGraph* graph, int index )
{
int i, max_vtx_count = graph->vtx->max_count;
int edge_size = graph->edge_size;
cvTsSimpleSetRemove( graph->vtx, index );
/* remove all the corresponding edges */
for( i = 0; i < max_vtx_count; i++ )
{
graph->matrix[(i*max_vtx_count + index)*edge_size] =
graph->matrix[(index*max_vtx_count + i)*edge_size] = 0;
}
}
static void cvTsSimpleGraphAddEdge( CvTsSimpleGraph* graph, int idx1, int idx2, void* edge )
{
int i, t, n = graph->oriented ? 1 : 2;
assert( cvTsSimpleSetFind( graph->vtx, idx1 ) &&
cvTsSimpleSetFind( graph->vtx, idx2 ));
for( i = 0; i < n; i++ )
{
int ofs = (idx1*graph->vtx->max_count + idx2)*graph->edge_size;
assert( graph->matrix[ofs] == 0 );
graph->matrix[ofs] = 1;
if( graph->edge_size > 1 )
memcpy( graph->matrix + ofs + 1, edge, graph->edge_size - 1 );
CV_SWAP( idx1, idx2, t );
}
}
static void cvTsSimpleGraphRemoveEdge( CvTsSimpleGraph* graph, int idx1, int idx2 )
{
int i, t, n = graph->oriented ? 1 : 2;
assert( cvTsSimpleSetFind( graph->vtx, idx1 ) &&
cvTsSimpleSetFind( graph->vtx, idx2 ));
for( i = 0; i < n; i++ )
{
int ofs = (idx1*graph->vtx->max_count + idx2)*graph->edge_size;
assert( graph->matrix[ofs] == 1 );
graph->matrix[ofs] = 0;
CV_SWAP( idx1, idx2, t );
}
}
static schar* cvTsSimpleGraphFindVertex( CvTsSimpleGraph* graph, int index )
{
return cvTsSimpleSetFind( graph->vtx, index );
}
static char* cvTsSimpleGraphFindEdge( CvTsSimpleGraph* graph, int idx1, int idx2 )
{
if( cvTsSimpleGraphFindVertex( graph, idx1 ) &&
cvTsSimpleGraphFindVertex( graph, idx2 ))
{
char* edge = graph->matrix + (idx1 * graph->vtx->max_count + idx2)*graph->edge_size;
if( edge[0] ) return edge + 1;
}
return 0;
}
static int cvTsSimpleGraphVertexDegree( CvTsSimpleGraph* graph, int index )
{
int i, count = 0;
int edge_size = graph->edge_size;
int max_vtx_count = graph->vtx->max_count;
assert( cvTsSimpleGraphFindVertex( graph, index ) != 0 );
for( i = 0; i < max_vtx_count; i++ )
{
count += graph->matrix[(i*max_vtx_count + index)*edge_size] +
graph->matrix[(index*max_vtx_count + i)*edge_size];
}
if( !graph->oriented )
{
assert( count % 2 == 0 );
count /= 2;
}
return count;
}
///////////////////////////////////// the tests //////////////////////////////////
#define CV_TS_SEQ_CHECK_CONDITION( expr, err_msg ) \
if( !(expr) ) \
{ \
set_error_context( #expr, err_msg, __FILE__, __LINE__ ); \
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );\
throw -1; \
}
class Core_DynStructBaseTest : public cvtest::BaseTest
{
public:
Core_DynStructBaseTest();
virtual ~Core_DynStructBaseTest();
bool can_do_fast_forward();
void clear();
protected:
int read_params( CvFileStorage* fs );
void run_func(void);
void set_error_context( const char* condition,
const char* err_msg,
const char* file, int line );
int test_seq_block_consistence( int _struct_idx, CvSeq* seq, int total );
void update_progressbar();
int struct_count, max_struct_size, iterations, generations;
int min_log_storage_block_size, max_log_storage_block_size;
int min_log_elem_size, max_log_elem_size;
int gen, struct_idx, iter;
int test_progress;
int64 start_time;
double cpu_freq;
vector<void*> cxcore_struct;
vector<void*> simple_struct;
Ptr<CvMemStorage> storage;
};
Core_DynStructBaseTest::Core_DynStructBaseTest()
{
struct_count = 2;
max_struct_size = 2000;
min_log_storage_block_size = 7;
max_log_storage_block_size = 12;
min_log_elem_size = 0;
max_log_elem_size = 8;
generations = 10;
iterations = max_struct_size*2;
gen = struct_idx = iter = -1;
test_progress = -1;
storage = 0;
}
Core_DynStructBaseTest::~Core_DynStructBaseTest()
{
clear();
}
void Core_DynStructBaseTest::run_func()
{
}
bool Core_DynStructBaseTest::can_do_fast_forward()
{
return false;
}
void Core_DynStructBaseTest::clear()
{
cvtest::BaseTest::clear();
}
int Core_DynStructBaseTest::read_params( CvFileStorage* fs )
{
int code = cvtest::BaseTest::read_params( fs );
double sqrt_scale = sqrt(ts->get_test_case_count_scale());
if( code < 0 )
return code;
struct_count = cvReadInt( find_param( fs, "struct_count" ), struct_count );
max_struct_size = cvReadInt( find_param( fs, "max_struct_size" ), max_struct_size );
generations = cvReadInt( find_param( fs, "generations" ), generations );
iterations = cvReadInt( find_param( fs, "iterations" ), iterations );
generations = cvRound(generations*sqrt_scale);
iterations = cvRound(iterations*sqrt_scale);
min_log_storage_block_size = cvReadInt( find_param( fs, "min_log_storage_block_size" ),
min_log_storage_block_size );
max_log_storage_block_size = cvReadInt( find_param( fs, "max_log_storage_block_size" ),
max_log_storage_block_size );
min_log_elem_size = cvReadInt( find_param( fs, "min_log_elem_size" ), min_log_elem_size );
max_log_elem_size = cvReadInt( find_param( fs, "max_log_elem_size" ), max_log_elem_size );
struct_count = cvtest::clipInt( struct_count, 1, 100 );
max_struct_size = cvtest::clipInt( max_struct_size, 1, 1<<20 );
generations = cvtest::clipInt( generations, 1, 100 );
iterations = cvtest::clipInt( iterations, 100, 1<<20 );
min_log_storage_block_size = cvtest::clipInt( min_log_storage_block_size, 7, 20 );
max_log_storage_block_size = cvtest::clipInt( max_log_storage_block_size,
min_log_storage_block_size, 20 );
min_log_elem_size = cvtest::clipInt( min_log_elem_size, 0, 8 );
max_log_elem_size = cvtest::clipInt( max_log_elem_size, min_log_elem_size, 10 );
return 0;
}
void Core_DynStructBaseTest::update_progressbar()
{
int64 t;
if( test_progress < 0 )
{
test_progress = 0;
cpu_freq = cv::getTickFrequency();
start_time = cv::getTickCount();
}
t = cv::getTickCount();
test_progress = update_progress( test_progress, 0, 0, (double)(t - start_time)/cpu_freq );
}
void Core_DynStructBaseTest::set_error_context( const char* condition,
const char* err_msg,
const char* filename, int lineno )
{
ts->printf( cvtest::TS::LOG, "file %s, line %d: %s\n(\"%s\" failed).\n"
"generation = %d, struct_idx = %d, iter = %d\n",
filename, lineno, err_msg, condition, gen, struct_idx, iter );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
}
int Core_DynStructBaseTest::test_seq_block_consistence( int _struct_idx, CvSeq* seq, int total )
{
int sum = 0;
struct_idx = _struct_idx;
CV_TS_SEQ_CHECK_CONDITION( seq != 0, "Null sequence pointer" );
if( seq->first )
{
CvSeqBlock* block = seq->first;
CvSeqBlock* prev_block = block->prev;
int delta_idx = seq->first->start_index;
for( ;; )
{
CV_TS_SEQ_CHECK_CONDITION( sum == block->start_index - delta_idx &&
block->count > 0 && block->prev == prev_block &&
prev_block->next == block,
"sequence blocks are inconsistent" );
sum += block->count;
prev_block = block;
block = block->next;
if( block == seq->first ) break;
}
CV_TS_SEQ_CHECK_CONDITION( block->prev->count * seq->elem_size +
block->prev->data <= seq->block_max,
"block->data or block_max pointer are incorrect" );
}
CV_TS_SEQ_CHECK_CONDITION( seq->total == sum && sum == total,
"total number of elements is incorrect" );
return 0;
}
/////////////////////////////////// sequence tests ////////////////////////////////////
class Core_SeqBaseTest : public Core_DynStructBaseTest
{
public:
Core_SeqBaseTest();
void clear();
void run( int );
protected:
int test_multi_create();
int test_get_seq_elem( int _struct_idx, int iters );
int test_get_seq_reading( int _struct_idx, int iters );
int test_seq_ops( int iters );
};
Core_SeqBaseTest::Core_SeqBaseTest()
{
}
void Core_SeqBaseTest::clear()
{
for( size_t i = 0; i < simple_struct.size(); i++ )
cvTsReleaseSimpleSeq( (CvTsSimpleSeq**)&simple_struct[i] );
Core_DynStructBaseTest::clear();
}
int Core_SeqBaseTest::test_multi_create()
{
vector<CvSeqWriter> writer(struct_count);
vector<int> pos(struct_count);
vector<int> index(struct_count);
int cur_count, elem_size;
RNG& rng = ts->get_rng();
for( int i = 0; i < struct_count; i++ )
{
double t;
CvTsSimpleSeq* sseq;
pos[i] = -1;
index[i] = i;
t = cvtest::randReal(rng)*(max_log_elem_size - min_log_elem_size) + min_log_elem_size;
elem_size = cvRound( exp(t * CV_LOG2) );
elem_size = MIN( elem_size, (int)(storage->block_size - sizeof(void*) -
sizeof(CvSeqBlock) - sizeof(CvMemBlock)) );
cvTsReleaseSimpleSeq( (CvTsSimpleSeq**)&simple_struct[i] );
simple_struct[i] = sseq = cvTsCreateSimpleSeq( max_struct_size, elem_size );
cxcore_struct[i] = 0;
sseq->count = cvtest::randInt( rng ) % max_struct_size;
Mat m( 1, MAX(sseq->count,1)*elem_size, CV_8UC1, sseq->array );
cvtest::randUni( rng, m, Scalar::all(0), Scalar::all(256) );
}
for( cur_count = struct_count; cur_count > 0; cur_count-- )
{
for(;;)
{
int k = cvtest::randInt( rng ) % cur_count;
struct_idx = index[k];
CvTsSimpleSeq* sseq = (CvTsSimpleSeq*)simple_struct[struct_idx];
if( pos[struct_idx] < 0 )
{
int hdr_size = (cvtest::randInt(rng) % 10)*4 + sizeof(CvSeq);
hdr_size = MIN( hdr_size, (int)(storage->block_size - sizeof(CvMemBlock)) );
elem_size = sseq->elem_size;
if( cvtest::randInt(rng) % 2 )
{
cvStartWriteSeq( 0, hdr_size, elem_size, storage, &writer[struct_idx] );
}
else
{
CvSeq* s;
s = cvCreateSeq( 0, hdr_size, elem_size, storage );
cvStartAppendToSeq( s, &writer[struct_idx] );
}
cvSetSeqBlockSize( writer[struct_idx].seq, cvtest::randInt( rng ) % 10000 );
pos[struct_idx] = 0;
}
update_progressbar();
if( pos[struct_idx] == sseq->count )
{
cxcore_struct[struct_idx] = cvEndWriteSeq( &writer[struct_idx] );
/* del index */
for( ; k < cur_count-1; k++ )
index[k] = index[k+1];
break;
}
{
schar* el = cvTsSimpleSeqElem( sseq, pos[struct_idx] );
CV_WRITE_SEQ_ELEM_VAR( el, writer[struct_idx] );
}
pos[struct_idx]++;
}
}
return 0;
}
int Core_SeqBaseTest::test_get_seq_elem( int _struct_idx, int iters )
{
RNG& rng = ts->get_rng();
CvSeq* seq = (CvSeq*)cxcore_struct[_struct_idx];
CvTsSimpleSeq* sseq = (CvTsSimpleSeq*)simple_struct[_struct_idx];
struct_idx = _struct_idx;
assert( seq->total == sseq->count );
if( sseq->count == 0 )
return 0;
for( int i = 0; i < iters; i++ )
{
int idx = cvtest::randInt(rng) % (sseq->count*3) - sseq->count*3/2;
int idx0 = (unsigned)idx < (unsigned)(sseq->count) ? idx : idx < 0 ?
idx + sseq->count : idx - sseq->count;
int bad_range = (unsigned)idx0 >= (unsigned)(sseq->count);
schar* elem;
elem = cvGetSeqElem( seq, idx );
if( bad_range )
{
CV_TS_SEQ_CHECK_CONDITION( elem == 0,
"cvGetSeqElem doesn't "
"handle \"out of range\" properly" );
}
else
{
CV_TS_SEQ_CHECK_CONDITION( elem != 0 &&
!memcmp( elem, cvTsSimpleSeqElem(sseq, idx0), sseq->elem_size ),
"cvGetSeqElem returns wrong element" );
idx = cvSeqElemIdx(seq, elem );
CV_TS_SEQ_CHECK_CONDITION( idx >= 0 && idx == idx0,
"cvSeqElemIdx is incorrect" );
}
}
return 0;
}
int Core_SeqBaseTest::test_get_seq_reading( int _struct_idx, int iters )
{
const int max_val = 3*5 + 2;
CvSeq* seq = (CvSeq*)cxcore_struct[_struct_idx];
CvTsSimpleSeq* sseq = (CvTsSimpleSeq*)simple_struct[_struct_idx];
int total = seq->total;
RNG& rng = ts->get_rng();
CvSeqReader reader;
vector<schar> _elem(sseq->elem_size);
schar* elem = &_elem[0];
assert( total == sseq->count );
this->struct_idx = _struct_idx;
int pos = cvtest::randInt(rng) % 2;
cvStartReadSeq( seq, &reader, pos );
if( total == 0 )
{
CV_TS_SEQ_CHECK_CONDITION( reader.ptr == 0, "Empty sequence reader pointer is not NULL" );
return 0;
}
pos = pos ? seq->total - 1 : 0;
CV_TS_SEQ_CHECK_CONDITION( pos == cvGetSeqReaderPos(&reader),
"initial reader position is wrong" );
for( iter = 0; iter < iters; iter++ )
{
int op = cvtest::randInt(rng) % max_val;
if( op >= max_val - 2 )
{
int new_pos, new_pos0;
int bad_range;
int is_relative = op == max_val - 1;
new_pos = cvtest::randInt(rng) % (total*2) - total;
new_pos0 = new_pos + (is_relative ? pos : 0 );
if( new_pos0 < 0 ) new_pos0 += total;
if( new_pos0 >= total ) new_pos0 -= total;
bad_range = (unsigned)new_pos0 >= (unsigned)total;
cvSetSeqReaderPos( &reader, new_pos, is_relative );
if( !bad_range )
{
CV_TS_SEQ_CHECK_CONDITION( new_pos0 == cvGetSeqReaderPos( &reader ),
"cvset reader position doesn't work" );
pos = new_pos0;
}
else
{
CV_TS_SEQ_CHECK_CONDITION( pos == cvGetSeqReaderPos( &reader ),
"reader doesn't stay at the current position after wrong positioning" );
}
}
else
{
int direction = (op % 3) - 1;
memcpy( elem, reader.ptr, sseq->elem_size );
if( direction > 0 )
{
CV_NEXT_SEQ_ELEM( sseq->elem_size, reader );
}
else if( direction < 0 )
{
CV_PREV_SEQ_ELEM( sseq->elem_size, reader );
}
CV_TS_SEQ_CHECK_CONDITION( memcmp(elem, cvTsSimpleSeqElem(sseq, pos),
sseq->elem_size) == 0, "reading is incorrect" );
pos += direction;
2011-04-20 11:28:16 +00:00
if( -pos > 0 ) pos += total;
if( pos >= total ) pos -= total;
CV_TS_SEQ_CHECK_CONDITION( pos == cvGetSeqReaderPos( &reader ),
"reader doesn't move correctly after reading" );
}
}
return 0;
}
int Core_SeqBaseTest::test_seq_ops( int iters )
{
const int max_op = 14;
int max_elem_size = 0;
schar* elem2 = 0;
RNG& rng = ts->get_rng();
for( int i = 0; i < struct_count; i++ )
max_elem_size = MAX( max_elem_size, ((CvSeq*)cxcore_struct[i])->elem_size );
vector<schar> elem_buf(max_struct_size*max_elem_size);
schar* elem = (schar*)&elem_buf[0];
Mat elem_mat;
for( iter = 0; iter < iters; iter++ )
{
struct_idx = cvtest::randInt(rng) % struct_count;
int op = cvtest::randInt(rng) % max_op;
CvSeq* seq = (CvSeq*)cxcore_struct[struct_idx];
CvTsSimpleSeq* sseq = (CvTsSimpleSeq*)simple_struct[struct_idx];
int elem_size = sseq->elem_size;
int whence = 0, pos = 0, count = 0;
switch( op )
{
case 0:
case 1:
case 2: // push/pushfront/insert
if( sseq->count == sseq->max_count )
break;
elem_mat = Mat(1, elem_size, CV_8U, elem);
cvtest::randUni( rng, elem_mat, cvScalarAll(0), cvScalarAll(255) );
whence = op - 1;
if( whence < 0 )
{
pos = 0;
cvSeqPushFront( seq, elem );
}
else if( whence > 0 )
{
pos = sseq->count;
cvSeqPush( seq, elem );
}
else
{
pos = cvtest::randInt(rng) % (sseq->count + 1);
cvSeqInsert( seq, pos, elem );
}
cvTsSimpleSeqShiftAndCopy( sseq, pos, pos + 1, elem );
elem2 = cvGetSeqElem( seq, pos );
CV_TS_SEQ_CHECK_CONDITION( elem2 != 0, "The inserted element could not be retrieved" );
CV_TS_SEQ_CHECK_CONDITION( seq->total == sseq->count &&
memcmp(elem2, cvTsSimpleSeqElem(sseq,pos), elem_size) == 0,
"The inserted sequence element is wrong" );
break;
case 3:
case 4:
case 5: // pop/popfront/remove
if( sseq->count == 0 )
break;
whence = op - 4;
if( whence < 0 )
{
pos = 0;
cvSeqPopFront( seq, elem );
}
else if( whence > 0 )
{
pos = sseq->count-1;
cvSeqPop( seq, elem );
}
else
{
pos = cvtest::randInt(rng) % sseq->count;
cvSeqRemove( seq, pos );
}
if( whence != 0 )
CV_TS_SEQ_CHECK_CONDITION( seq->total == sseq->count - 1 &&
memcmp( elem, cvTsSimpleSeqElem(sseq,pos), elem_size) == 0,
"The popped sequence element isn't correct" );
cvTsSimpleSeqShiftAndCopy( sseq, pos + 1, pos );
if( sseq->count > 0 )
{
elem2 = cvGetSeqElem( seq, pos < sseq->count ? pos : -1 );
CV_TS_SEQ_CHECK_CONDITION( elem2 != 0, "GetSeqElem fails after removing the element" );
CV_TS_SEQ_CHECK_CONDITION( memcmp( elem2,
cvTsSimpleSeqElem(sseq, pos - (pos == sseq->count)), elem_size) == 0,
"The first shifted element is not correct after removing another element" );
}
else
{
CV_TS_SEQ_CHECK_CONDITION( seq->first == 0,
"The sequence doesn't become empty after the final remove" );
}
break;
case 6:
case 7:
case 8: // push [front] multi/insert slice
if( sseq->count == sseq->max_count )
break;
count = cvtest::randInt( rng ) % (sseq->max_count - sseq->count + 1);
elem_mat = Mat(1, MAX(count,1) * elem_size, CV_8U, elem);
cvtest::randUni( rng, elem_mat, cvScalarAll(0), cvScalarAll(255) );
whence = op - 7;
pos = whence < 0 ? 0 : whence > 0 ? sseq->count : cvtest::randInt(rng) % (sseq->count+1);
if( whence != 0 )
{
cvSeqPushMulti( seq, elem, count, whence < 0 );
}
else
{
CvSeq header;
CvSeqBlock block;
cvMakeSeqHeaderForArray( CV_SEQ_KIND_GENERIC, sizeof(CvSeq),
sseq->elem_size,
elem, count,
&header, &block );
cvSeqInsertSlice( seq, pos, &header );
}
cvTsSimpleSeqShiftAndCopy( sseq, pos, pos + count, elem );
if( sseq->count > 0 )
{
// choose the random element among the added
pos = count > 0 ? cvtest::randInt(rng) % count + pos : MAX(pos-1,0);
elem2 = cvGetSeqElem( seq, pos );
CV_TS_SEQ_CHECK_CONDITION( elem2 != 0, "multi push operation doesn't add elements" );
CV_TS_SEQ_CHECK_CONDITION( seq->total == sseq->count &&
memcmp( elem2, cvTsSimpleSeqElem(sseq,pos), elem_size) == 0,
"One of the added elements is wrong" );
}
else
{
CV_TS_SEQ_CHECK_CONDITION( seq->total == 0 && seq->first == 0,
"Adding no elements to empty sequence fails" );
}
break;
case 9:
case 10:
case 11: // pop [front] multi
if( sseq->count == 0 )
break;
count = cvtest::randInt(rng) % (sseq->count+1);
whence = op - 10;
pos = whence < 0 ? 0 : whence > 0 ? sseq->count - count :
cvtest::randInt(rng) % (sseq->count - count + 1);
if( whence != 0 )
{
cvSeqPopMulti( seq, elem, count, whence < 0 );
if( count > 0 )
{
CV_TS_SEQ_CHECK_CONDITION( memcmp(elem,
cvTsSimpleSeqElem(sseq,pos), elem_size) == 0,
"The first (in the sequence order) removed element is wrong after popmulti" );
}
}
else
{
cvSeqRemoveSlice( seq, cvSlice(pos, pos + count) );
}
CV_TS_SEQ_CHECK_CONDITION( seq->total == sseq->count - count,
"The popmulti left a wrong number of elements in the sequence" );
cvTsSimpleSeqShiftAndCopy( sseq, pos + count, pos, 0 );
if( sseq->count > 0 )
{
pos = whence < 0 ? 0 : MIN( pos, sseq->count - 1 );
elem2 = cvGetSeqElem( seq, pos );
CV_TS_SEQ_CHECK_CONDITION( elem2 &&
memcmp( elem2, cvTsSimpleSeqElem(sseq,pos), elem_size) == 0,
"The last sequence element is wrong after POP" );
}
else
{
CV_TS_SEQ_CHECK_CONDITION( seq->total == 0 && seq->first == 0,
"The sequence doesn't become empty after final POP" );
}
break;
case 12: // seqslice
{
CvMemStoragePos storage_pos;
cvSaveMemStoragePos( storage, &storage_pos );
int copy_data = cvtest::randInt(rng) % 2;
count = cvtest::randInt(rng) % (seq->total + 1);
pos = cvtest::randInt(rng) % (seq->total - count + 1);
CvSeq* seq_slice = cvSeqSlice( seq, cvSlice(pos, pos + count), storage, copy_data );
CV_TS_SEQ_CHECK_CONDITION( seq_slice && seq_slice->total == count,
"cvSeqSlice returned incorrect slice" );
if( count > 0 )
{
int test_idx = cvtest::randInt(rng) % count;
elem2 = cvGetSeqElem( seq_slice, test_idx );
schar* elem3 = cvGetSeqElem( seq, pos + test_idx );
CV_TS_SEQ_CHECK_CONDITION( elem2 &&
memcmp( elem2, cvTsSimpleSeqElem(sseq,pos + test_idx), elem_size) == 0,
"The extracted slice elements are not correct" );
CV_TS_SEQ_CHECK_CONDITION( (elem2 == elem3) ^ copy_data,
"copy_data flag is handled incorrectly" );
}
cvRestoreMemStoragePos( storage, &storage_pos );
}
break;
case 13: // clear
cvTsClearSimpleSeq( sseq );
cvClearSeq( seq );
CV_TS_SEQ_CHECK_CONDITION( seq->total == 0 && seq->first == 0,
"The sequence doesn't become empty after clear" );
break;
default:
assert(0);
return -1;
}
if( test_seq_block_consistence(struct_idx, seq, sseq->count) < 0 )
return -1;
if( test_get_seq_elem(struct_idx, 7) < 0 )
return -1;
update_progressbar();
}
return 0;
}
void Core_SeqBaseTest::run( int )
{
try
{
RNG& rng = ts->get_rng();
int i;
double t;
clear();
test_progress = -1;
simple_struct.resize(struct_count, 0);
cxcore_struct.resize(struct_count, 0);
for( gen = 0; gen < generations; gen++ )
{
struct_idx = iter = -1;
if( !storage )
{
t = cvtest::randReal(rng)*(max_log_storage_block_size - min_log_storage_block_size)
+ min_log_storage_block_size;
storage = cvCreateMemStorage( cvRound( exp(t * CV_LOG2) ) );
}
iter = struct_idx = -1;
test_multi_create();
for( i = 0; i < struct_count; i++ )
{
if( test_seq_block_consistence(i, (CvSeq*)cxcore_struct[i],
((CvTsSimpleSeq*)simple_struct[i])->count) < 0 )
return;
if( test_get_seq_elem( i, MAX(iterations/3,7) ) < 0 )
return;
if( test_get_seq_reading( i, MAX(iterations/3,7) ) < 0 )
return;
update_progressbar();
}
if( test_seq_ops( iterations ) < 0 )
return;
if( cvtest::randInt(rng) % 2 )
storage.release();
else
cvClearMemStorage( storage );
}
}
catch(int)
{
}
}
////////////////////////////// more sequence tests //////////////////////////////////////
class Core_SeqSortInvTest : public Core_SeqBaseTest
{
public:
Core_SeqSortInvTest();
void run( int );
protected:
};
Core_SeqSortInvTest::Core_SeqSortInvTest()
{
}
static int icvCmpSeqElems( const void* a, const void* b, void* userdata )
{
return memcmp( a, b, ((CvSeq*)userdata)->elem_size );
}
static int icvCmpSeqElems2_elem_size = 0;
static int icvCmpSeqElems2( const void* a, const void* b )
{
return memcmp( a, b, icvCmpSeqElems2_elem_size );
}
void Core_SeqSortInvTest::run( int )
{
try
{
RNG& rng = ts->get_rng();
int i, k;
double t;
schar *elem0, *elem, *elem2;
vector<uchar> buffer;
clear();
test_progress = -1;
simple_struct.resize(struct_count, 0);
cxcore_struct.resize(struct_count, 0);
for( gen = 0; gen < generations; gen++ )
{
struct_idx = iter = -1;
if( storage.empty() )
{
t = cvtest::randReal(rng)*(max_log_storage_block_size - min_log_storage_block_size)
+ min_log_storage_block_size;
storage = cvCreateMemStorage( cvRound( exp(t * CV_LOG2) ) );
}
for( iter = 0; iter < iterations/10; iter++ )
{
int max_size = 0;
test_multi_create();
for( i = 0; i < struct_count; i++ )
{
CvTsSimpleSeq* sseq = (CvTsSimpleSeq*)simple_struct[i];
max_size = MAX( max_size, sseq->count*sseq->elem_size );
}
buffer.resize(max_size);
for( i = 0; i < struct_count; i++ )
{
CvSeq* seq = (CvSeq*)cxcore_struct[i];
CvTsSimpleSeq* sseq = (CvTsSimpleSeq*)simple_struct[i];
CvSlice slice = CV_WHOLE_SEQ;
//printf("%d. %d. %d-th size = %d\n", gen, iter, i, sseq->count );
cvSeqInvert( seq );
cvTsSimpleSeqInvert( sseq );
if( test_seq_block_consistence( i, seq, sseq->count ) < 0 )
return;
if( sseq->count > 0 && cvtest::randInt(rng) % 2 == 0 )
{
slice.end_index = cvtest::randInt(rng) % sseq->count + 1;
slice.start_index = cvtest::randInt(rng) % (sseq->count - slice.end_index + 1);
slice.end_index += slice.start_index;
}
cvCvtSeqToArray( seq, &buffer[0], slice );
slice.end_index = MIN( slice.end_index, sseq->count );
CV_TS_SEQ_CHECK_CONDITION( sseq->count == 0 || memcmp( &buffer[0],
sseq->array + slice.start_index*sseq->elem_size,
(slice.end_index - slice.start_index)*sseq->elem_size ) == 0,
"cvSeqInvert returned wrong result" );
for( k = 0; k < (sseq->count > 0 ? 10 : 0); k++ )
{
int idx0 = cvtest::randInt(rng) % sseq->count, idx = 0;
elem0 = cvTsSimpleSeqElem( sseq, idx0 );
elem = cvGetSeqElem( seq, idx0 );
elem2 = cvSeqSearch( seq, elem0, k % 2 ? icvCmpSeqElems : 0, 0, &idx, seq );
CV_TS_SEQ_CHECK_CONDITION( elem != 0 &&
memcmp( elem0, elem, seq->elem_size ) == 0,
"cvSeqInvert gives incorrect result" );
CV_TS_SEQ_CHECK_CONDITION( elem2 != 0 &&
memcmp( elem0, elem2, seq->elem_size ) == 0 &&
elem2 == cvGetSeqElem( seq, idx ),
"cvSeqSearch failed (linear search)" );
}
cvSeqSort( seq, icvCmpSeqElems, seq );
if( test_seq_block_consistence( i, seq, sseq->count ) < 0 )
return;
if( sseq->count > 0 )
{
// !!! This is not thread-safe !!!
icvCmpSeqElems2_elem_size = sseq->elem_size;
qsort( sseq->array, sseq->count, sseq->elem_size, icvCmpSeqElems2 );
if( cvtest::randInt(rng) % 2 == 0 )
{
slice.end_index = cvtest::randInt(rng) % sseq->count + 1;
slice.start_index = cvtest::randInt(rng) % (sseq->count - slice.end_index + 1);
slice.end_index += slice.start_index;
}
}
cvCvtSeqToArray( seq, &buffer[0], slice );
CV_TS_SEQ_CHECK_CONDITION( sseq->count == 0 || memcmp( &buffer[0],
sseq->array + slice.start_index*sseq->elem_size,
(slice.end_index - slice.start_index)*sseq->elem_size ) == 0,
"cvSeqSort returned wrong result" );
for( k = 0; k < (sseq->count > 0 ? 10 : 0); k++ )
{
int idx0 = cvtest::randInt(rng) % sseq->count, idx = 0;
elem0 = cvTsSimpleSeqElem( sseq, idx0 );
elem = cvGetSeqElem( seq, idx0 );
elem2 = cvSeqSearch( seq, elem0, icvCmpSeqElems, 1, &idx, seq );
CV_TS_SEQ_CHECK_CONDITION( elem != 0 &&
memcmp( elem0, elem, seq->elem_size ) == 0,
"cvSeqSort gives incorrect result" );
CV_TS_SEQ_CHECK_CONDITION( elem2 != 0 &&
memcmp( elem0, elem2, seq->elem_size ) == 0 &&
elem2 == cvGetSeqElem( seq, idx ),
"cvSeqSearch failed (binary search)" );
}
}
cvClearMemStorage( storage );
}
storage.release();
}
}
catch (int)
{
}
}
/////////////////////////////////////// set tests ///////////////////////////////////////
class Core_SetTest : public Core_DynStructBaseTest
{
public:
Core_SetTest();
void clear();
void run( int );
protected:
//int test_seq_block_consistence( int struct_idx );
int test_set_ops( int iters );
};
Core_SetTest::Core_SetTest()
{
}
void Core_SetTest::clear()
{
for( size_t i = 0; i < simple_struct.size(); i++ )
cvTsReleaseSimpleSet( (CvTsSimpleSet**)&simple_struct[i] );
Core_DynStructBaseTest::clear();
}
int Core_SetTest::test_set_ops( int iters )
{
const int max_op = 4;
int max_elem_size = 0;
int idx, idx0;
CvSetElem *elem = 0, *elem2 = 0, *elem3 = 0;
schar* elem_data = 0;
RNG& rng = ts->get_rng();
//int max_active_count = 0, mean_active_count = 0;
for( int i = 0; i < struct_count; i++ )
max_elem_size = MAX( max_elem_size, ((CvSeq*)cxcore_struct[i])->elem_size );
vector<schar> elem_buf(max_elem_size);
Mat elem_mat;
for( iter = 0; iter < iters; iter++ )
{
struct_idx = cvtest::randInt(rng) % struct_count;
CvSet* cvset = (CvSet*)cxcore_struct[struct_idx];
CvTsSimpleSet* sset = (CvTsSimpleSet*)simple_struct[struct_idx];
int pure_elem_size = sset->elem_size - 1;
int prev_total = cvset->total, prev_count = cvset->active_count;
int op = cvtest::randInt(rng) % (iter <= iters/10 ? 2 : max_op);
int by_ptr = op % 2 == 0;
CvSetElem* first_free = cvset->free_elems;
CvSetElem* next_free = first_free ? first_free->next_free : 0;
int pass_data = 0;
if( iter > iters/10 && cvtest::randInt(rng)%200 == 0 ) // clear set
{
prev_count = cvset->total;
cvClearSet( cvset );
cvTsClearSimpleSet( sset );
CV_TS_SEQ_CHECK_CONDITION( cvset->active_count == 0 && cvset->total == 0 &&
cvset->first == 0 && cvset->free_elems == 0 &&
(cvset->free_blocks != 0 || prev_count == 0),
"cvClearSet doesn't remove all the elements" );
continue;
}
else if( op == 0 || op == 1 ) // add element
{
if( sset->free_count == 0 )
continue;
elem_mat = Mat(1, cvset->elem_size, CV_8U, &elem_buf[0]);
cvtest::randUni( rng, elem_mat, cvScalarAll(0), cvScalarAll(255) );
elem = (CvSetElem*)&elem_buf[0];
if( by_ptr )
{
elem2 = cvSetNew( cvset );
CV_TS_SEQ_CHECK_CONDITION( elem2 != 0, "cvSetNew returned NULL pointer" );
}
else
{
pass_data = cvtest::randInt(rng) % 2;
idx = cvSetAdd( cvset, pass_data ? elem : 0, &elem2 );
CV_TS_SEQ_CHECK_CONDITION( elem2 != 0 && elem2->flags == idx,
"cvSetAdd returned NULL pointer or a wrong index" );
}
elem_data = (schar*)elem + sizeof(int);
if( !pass_data )
memcpy( (schar*)elem2 + sizeof(int), elem_data, pure_elem_size );
idx = elem2->flags;
idx0 = cvTsSimpleSetAdd( sset, elem_data );
elem3 = cvGetSetElem( cvset, idx );
CV_TS_SEQ_CHECK_CONDITION( CV_IS_SET_ELEM(elem3) &&
idx == idx0 && elem3 == elem2 && (!pass_data ||
memcmp( (char*)elem3 + sizeof(int), elem_data, pure_elem_size) == 0),
"The added element is not correct" );
CV_TS_SEQ_CHECK_CONDITION( (!first_free || elem3 == first_free) &&
(!next_free || cvset->free_elems == next_free) &&
cvset->active_count == prev_count + 1,
"The free node list is modified incorrectly" );
}
else if( op == 2 || op == 3 ) // remove element
{
idx = cvtest::randInt(rng) % sset->max_count;
if( sset->free_count == sset->max_count || idx >= sset->count )
continue;
elem_data = cvTsSimpleSetFind(sset, idx);
if( elem_data == 0 )
continue;
elem = cvGetSetElem( cvset, idx );
CV_TS_SEQ_CHECK_CONDITION( CV_IS_SET_ELEM(elem) && elem->flags == idx &&
memcmp((char*)elem + sizeof(int), elem_data, pure_elem_size) == 0,
"cvGetSetElem returned wrong element" );
if( by_ptr )
{
cvSetRemoveByPtr( cvset, elem );
}
else
{
cvSetRemove( cvset, idx );
}
cvTsSimpleSetRemove( sset, idx );
CV_TS_SEQ_CHECK_CONDITION( !CV_IS_SET_ELEM(elem) && !cvGetSetElem(cvset, idx) &&
(elem->flags & CV_SET_ELEM_IDX_MASK) == idx,
"cvSetRemove[ByPtr] didn't release the element properly" );
CV_TS_SEQ_CHECK_CONDITION( elem->next_free == first_free &&
cvset->free_elems == elem &&
cvset->active_count == prev_count - 1,
"The free node list has not been updated properly" );
}
//max_active_count = MAX( max_active_count, cvset->active_count );
//mean_active_count += cvset->active_count;
CV_TS_SEQ_CHECK_CONDITION( cvset->active_count == sset->max_count - sset->free_count &&
cvset->total >= cvset->active_count &&
(cvset->total == 0 || cvset->total >= prev_total),
"The total number of cvset elements is not correct" );
// CvSet and simple set do not neccessary have the same "total" (active & free) number,
// so pass "set->total" to skip that check
test_seq_block_consistence( struct_idx, (CvSeq*)cvset, cvset->total );
update_progressbar();
}
return 0;
}
void Core_SetTest::run( int )
{
try
{
RNG& rng = ts->get_rng();
double t;
clear();
test_progress = -1;
simple_struct.resize(struct_count, 0);
cxcore_struct.resize(struct_count, 0);
for( gen = 0; gen < generations; gen++ )
{
struct_idx = iter = -1;
t = cvtest::randReal(rng)*(max_log_storage_block_size - min_log_storage_block_size) + min_log_storage_block_size;
storage = cvCreateMemStorage( cvRound( exp(t * CV_LOG2) ) );
for( int i = 0; i < struct_count; i++ )
{
t = cvtest::randReal(rng)*(max_log_elem_size - min_log_elem_size) + min_log_elem_size;
int pure_elem_size = cvRound( exp(t * CV_LOG2) );
int elem_size = pure_elem_size + sizeof(int);
elem_size = (elem_size + sizeof(size_t) - 1) & ~(sizeof(size_t)-1);
elem_size = MAX( elem_size, (int)sizeof(CvSetElem) );
elem_size = MIN( elem_size, (int)(storage->block_size - sizeof(void*) - sizeof(CvMemBlock) - sizeof(CvSeqBlock)) );
pure_elem_size = MIN( pure_elem_size, elem_size-(int)sizeof(CvSetElem) );
cvTsReleaseSimpleSet( (CvTsSimpleSet**)&simple_struct[i] );
simple_struct[i] = cvTsCreateSimpleSet( max_struct_size, pure_elem_size );
cxcore_struct[i] = cvCreateSet( 0, sizeof(CvSet), elem_size, storage );
}
if( test_set_ops( iterations*100 ) < 0 )
return;
storage.release();
}
}
catch(int)
{
}
}
/////////////////////////////////////// graph tests //////////////////////////////////
class Core_GraphTest : public Core_DynStructBaseTest
{
public:
Core_GraphTest();
void clear();
void run( int );
protected:
//int test_seq_block_consistence( int struct_idx );
int test_graph_ops( int iters );
};
Core_GraphTest::Core_GraphTest()
{
}
void Core_GraphTest::clear()
{
for( size_t i = 0; i < simple_struct.size(); i++ )
cvTsReleaseSimpleGraph( (CvTsSimpleGraph**)&simple_struct[i] );
Core_DynStructBaseTest::clear();
}
int Core_GraphTest::test_graph_ops( int iters )
{
const int max_op = 4;
int i, k;
int max_elem_size = 0;
int idx, idx0;
CvGraphVtx *vtx = 0, *vtx2 = 0, *vtx3 = 0;
CvGraphEdge* edge = 0, *edge2 = 0;
RNG& rng = ts->get_rng();
//int max_active_count = 0, mean_active_count = 0;
for( i = 0; i < struct_count; i++ )
{
CvGraph* graph = (CvGraph*)cxcore_struct[i];
max_elem_size = MAX( max_elem_size, graph->elem_size );
max_elem_size = MAX( max_elem_size, graph->edges->elem_size );
}
vector<schar> elem_buf(max_elem_size);
Mat elem_mat;
for( iter = 0; iter < iters; iter++ )
{
struct_idx = cvtest::randInt(rng) % struct_count;
CvGraph* graph = (CvGraph*)cxcore_struct[struct_idx];
CvTsSimpleGraph* sgraph = (CvTsSimpleGraph*)simple_struct[struct_idx];
CvSet* edges = graph->edges;
schar *vtx_data;
char *edge_data;
int pure_vtx_size = sgraph->vtx->elem_size - 1,
pure_edge_size = sgraph->edge_size - 1;
int prev_vtx_total = graph->total,
prev_edge_total = graph->edges->total,
prev_vtx_count = graph->active_count,
prev_edge_count = graph->edges->active_count;
int op = cvtest::randInt(rng) % max_op;
int pass_data = 0, vtx_degree0 = 0, vtx_degree = 0;
CvSetElem *first_free, *next_free;
if( cvtest::randInt(rng) % 200 == 0 ) // clear graph
{
int prev_vtx_count2 = graph->total, prev_edge_count2 = graph->edges->total;
cvClearGraph( graph );
cvTsClearSimpleGraph( sgraph );
CV_TS_SEQ_CHECK_CONDITION( graph->active_count == 0 && graph->total == 0 &&
graph->first == 0 && graph->free_elems == 0 &&
(graph->free_blocks != 0 || prev_vtx_count2 == 0),
"The graph is not empty after clearing" );
CV_TS_SEQ_CHECK_CONDITION( edges->active_count == 0 && edges->total == 0 &&
edges->first == 0 && edges->free_elems == 0 &&
(edges->free_blocks != 0 || prev_edge_count2 == 0),
"The graph is not empty after clearing" );
}
else if( op == 0 ) // add vertex
{
if( sgraph->vtx->free_count == 0 )
continue;
first_free = graph->free_elems;
next_free = first_free ? first_free->next_free : 0;
if( pure_vtx_size )
{
elem_mat = Mat(1, graph->elem_size, CV_8U, &elem_buf[0]);
cvtest::randUni( rng, elem_mat, cvScalarAll(0), cvScalarAll(255) );
}
vtx = (CvGraphVtx*)&elem_buf[0];
idx0 = cvTsSimpleGraphAddVertex( sgraph, vtx + 1 );
pass_data = cvtest::randInt(rng) % 2;
idx = cvGraphAddVtx( graph, pass_data ? vtx : 0, &vtx2 );
if( !pass_data && pure_vtx_size > 0 )
memcpy( vtx2 + 1, vtx + 1, pure_vtx_size );
vtx3 = cvGetGraphVtx( graph, idx );
CV_TS_SEQ_CHECK_CONDITION( (CV_IS_SET_ELEM(vtx3) && vtx3->flags == idx &&
vtx3->first == 0) || (idx == idx0 && vtx3 == vtx2 &&
(!pass_data || pure_vtx_size == 0 ||
memcmp(vtx3 + 1, vtx + 1, pure_vtx_size) == 0)),
"The added element is not correct" );
CV_TS_SEQ_CHECK_CONDITION( (!first_free || first_free == (CvSetElem*)vtx3) &&
(!next_free || graph->free_elems == next_free) &&
graph->active_count == prev_vtx_count + 1,
"The free node list is modified incorrectly" );
}
else if( op == 1 ) // remove vertex
{
idx = cvtest::randInt(rng) % sgraph->vtx->max_count;
if( sgraph->vtx->free_count == sgraph->vtx->max_count || idx >= sgraph->vtx->count )
continue;
vtx_data = cvTsSimpleGraphFindVertex(sgraph, idx);
if( vtx_data == 0 )
continue;
vtx_degree0 = cvTsSimpleGraphVertexDegree( sgraph, idx );
first_free = graph->free_elems;
vtx = cvGetGraphVtx( graph, idx );
CV_TS_SEQ_CHECK_CONDITION( CV_IS_SET_ELEM(vtx) && vtx->flags == idx &&
(pure_vtx_size == 0 || memcmp( vtx + 1, vtx_data, pure_vtx_size) == 0),
"cvGetGraphVtx returned wrong element" );
if( cvtest::randInt(rng) % 2 )
{
vtx_degree = cvGraphVtxDegreeByPtr( graph, vtx );
cvGraphRemoveVtxByPtr( graph, vtx );
}
else
{
vtx_degree = cvGraphVtxDegree( graph, idx );
cvGraphRemoveVtx( graph, idx );
}
cvTsSimpleGraphRemoveVertex( sgraph, idx );
CV_TS_SEQ_CHECK_CONDITION( vtx_degree == vtx_degree0,
"Number of incident edges is different in two graph representations" );
CV_TS_SEQ_CHECK_CONDITION( !CV_IS_SET_ELEM(vtx) && !cvGetGraphVtx(graph, idx) &&
(vtx->flags & CV_SET_ELEM_IDX_MASK) == idx,
"cvGraphRemoveVtx[ByPtr] didn't release the vertex properly" );
CV_TS_SEQ_CHECK_CONDITION( graph->edges->active_count == prev_edge_count - vtx_degree,
"cvGraphRemoveVtx[ByPtr] didn't remove all the incident edges "
"(or removed some extra)" );
CV_TS_SEQ_CHECK_CONDITION( ((CvSetElem*)vtx)->next_free == first_free &&
graph->free_elems == (CvSetElem*)vtx &&
graph->active_count == prev_vtx_count - 1,
"The free node list has not been updated properly" );
}
else if( op == 2 ) // add edge
{
int v_idx[2] = {0,0}, res = 0;
int v_prev_degree[2] = {0,0}, v_degree[2] = {0,0};
if( sgraph->vtx->free_count >= sgraph->vtx->max_count-1 )
continue;
for( i = 0, k = 0; i < 10; i++ )
{
int j = cvtest::randInt(rng) % sgraph->vtx->count;
vtx_data = cvTsSimpleGraphFindVertex( sgraph, j );
if( vtx_data )
{
v_idx[k] = j;
if( k == 0 )
k++;
else if( v_idx[0] != v_idx[1] &&
cvTsSimpleGraphFindEdge( sgraph, v_idx[0], v_idx[1] ) == 0 )
{
k++;
break;
}
}
}
if( k < 2 )
continue;
first_free = graph->edges->free_elems;
next_free = first_free ? first_free->next_free : 0;
edge = cvFindGraphEdge( graph, v_idx[0], v_idx[1] );
CV_TS_SEQ_CHECK_CONDITION( edge == 0, "Extra edge appeared in the graph" );
if( pure_edge_size > 0 )
{
elem_mat = Mat(1, graph->edges->elem_size, CV_8U, &elem_buf[0]);
cvtest::randUni( rng, elem_mat, cvScalarAll(0), cvScalarAll(255) );
}
edge = (CvGraphEdge*)&elem_buf[0];
// assign some default weight that is easy to check for
// consistensy, 'cause an edge weight is not stored
// in the simple graph
edge->weight = (float)(v_idx[0] + v_idx[1]);
pass_data = cvtest::randInt(rng) % 2;
vtx = cvGetGraphVtx( graph, v_idx[0] );
vtx2 = cvGetGraphVtx( graph, v_idx[1] );
CV_TS_SEQ_CHECK_CONDITION( vtx != 0 && vtx2 != 0 && vtx->flags == v_idx[0] &&
vtx2->flags == v_idx[1], "Some of the vertices are missing" );
if( cvtest::randInt(rng) % 2 )
{
v_prev_degree[0] = cvGraphVtxDegreeByPtr( graph, vtx );
v_prev_degree[1] = cvGraphVtxDegreeByPtr( graph, vtx2 );
res = cvGraphAddEdgeByPtr(graph, vtx, vtx2, pass_data ? edge : 0, &edge2);
v_degree[0] = cvGraphVtxDegreeByPtr( graph, vtx );
v_degree[1] = cvGraphVtxDegreeByPtr( graph, vtx2 );
}
else
{
v_prev_degree[0] = cvGraphVtxDegree( graph, v_idx[0] );
v_prev_degree[1] = cvGraphVtxDegree( graph, v_idx[1] );
res = cvGraphAddEdge(graph, v_idx[0], v_idx[1], pass_data ? edge : 0, &edge2);
v_degree[0] = cvGraphVtxDegree( graph, v_idx[0] );
v_degree[1] = cvGraphVtxDegree( graph, v_idx[1] );
}
//edge3 = (CvGraphEdge*)cvGetSetElem( graph->edges, idx );
CV_TS_SEQ_CHECK_CONDITION( res == 1 && edge2 != 0 && CV_IS_SET_ELEM(edge2) &&
((edge2->vtx[0] == vtx && edge2->vtx[1] == vtx2) ||
(!CV_IS_GRAPH_ORIENTED(graph) && edge2->vtx[0] == vtx2 && edge2->vtx[1] == vtx)) &&
(!pass_data || pure_edge_size == 0 || memcmp( edge2 + 1, edge + 1, pure_edge_size ) == 0),
"The edge has been added incorrectly" );
if( !pass_data )
{
if( pure_edge_size > 0 )
memcpy( edge2 + 1, edge + 1, pure_edge_size );
edge2->weight = edge->weight;
}
CV_TS_SEQ_CHECK_CONDITION( v_degree[0] == v_prev_degree[0] + 1 &&
v_degree[1] == v_prev_degree[1] + 1,
"The vertices lists have not been updated properly" );
cvTsSimpleGraphAddEdge( sgraph, v_idx[0], v_idx[1], edge + 1 );
CV_TS_SEQ_CHECK_CONDITION( (!first_free || first_free == (CvSetElem*)edge2) &&
(!next_free || graph->edges->free_elems == next_free) &&
graph->edges->active_count == prev_edge_count + 1,
"The free node list is modified incorrectly" );
}
else if( op == 3 ) // find & remove edge
{
int v_idx[2] = {0,0}, by_ptr;
int v_prev_degree[2] = {0,0}, v_degree[2] = {0,0};
if( sgraph->vtx->free_count >= sgraph->vtx->max_count-1 )
continue;
edge_data = 0;
for( i = 0, k = 0; i < 10; i++ )
{
int j = cvtest::randInt(rng) % sgraph->vtx->count;
vtx_data = cvTsSimpleGraphFindVertex( sgraph, j );
if( vtx_data )
{
v_idx[k] = j;
if( k == 0 )
k++;
else
{
edge_data = cvTsSimpleGraphFindEdge( sgraph, v_idx[0], v_idx[1] );
if( edge_data )
{
k++;
break;
}
}
}
}
if( k < 2 )
continue;
by_ptr = cvtest::randInt(rng) % 2;
first_free = graph->edges->free_elems;
vtx = cvGetGraphVtx( graph, v_idx[0] );
vtx2 = cvGetGraphVtx( graph, v_idx[1] );
CV_TS_SEQ_CHECK_CONDITION( vtx != 0 && vtx2 != 0 && vtx->flags == v_idx[0] &&
vtx2->flags == v_idx[1], "Some of the vertices are missing" );
if( by_ptr )
{
edge = cvFindGraphEdgeByPtr( graph, vtx, vtx2 );
v_prev_degree[0] = cvGraphVtxDegreeByPtr( graph, vtx );
v_prev_degree[1] = cvGraphVtxDegreeByPtr( graph, vtx2 );
}
else
{
edge = cvFindGraphEdge( graph, v_idx[0], v_idx[1] );
v_prev_degree[0] = cvGraphVtxDegree( graph, v_idx[0] );
v_prev_degree[1] = cvGraphVtxDegree( graph, v_idx[1] );
}
idx = edge->flags;
CV_TS_SEQ_CHECK_CONDITION( edge != 0 && edge->weight == v_idx[0] + v_idx[1] &&
((edge->vtx[0] == vtx && edge->vtx[1] == vtx2) ||
(!CV_IS_GRAPH_ORIENTED(graph) && edge->vtx[1] == vtx && edge->vtx[0] == vtx2)) &&
(pure_edge_size == 0 || memcmp(edge + 1, edge_data, pure_edge_size) == 0),
"An edge is missing or incorrect" );
if( by_ptr )
{
cvGraphRemoveEdgeByPtr( graph, vtx, vtx2 );
edge2 = cvFindGraphEdgeByPtr( graph, vtx, vtx2 );
v_degree[0] = cvGraphVtxDegreeByPtr( graph, vtx );
v_degree[1] = cvGraphVtxDegreeByPtr( graph, vtx2 );
}
else
{
cvGraphRemoveEdge(graph, v_idx[0], v_idx[1] );
edge2 = cvFindGraphEdge( graph, v_idx[0], v_idx[1] );
v_degree[0] = cvGraphVtxDegree( graph, v_idx[0] );
v_degree[1] = cvGraphVtxDegree( graph, v_idx[1] );
}
CV_TS_SEQ_CHECK_CONDITION( !edge2 && !CV_IS_SET_ELEM(edge),
"The edge has not been removed from the edge set" );
CV_TS_SEQ_CHECK_CONDITION( v_degree[0] == v_prev_degree[0] - 1 &&
v_degree[1] == v_prev_degree[1] - 1,
"The vertices lists have not been updated properly" );
cvTsSimpleGraphRemoveEdge( sgraph, v_idx[0], v_idx[1] );
CV_TS_SEQ_CHECK_CONDITION( graph->edges->free_elems == (CvSetElem*)edge &&
graph->edges->free_elems->next_free == first_free &&
graph->edges->active_count == prev_edge_count - 1,
"The free edge list has not been modified properly" );
}
//max_active_count = MAX( max_active_count, graph->active_count );
//mean_active_count += graph->active_count;
CV_TS_SEQ_CHECK_CONDITION( graph->active_count == sgraph->vtx->max_count - sgraph->vtx->free_count &&
graph->total >= graph->active_count &&
(graph->total == 0 || graph->total >= prev_vtx_total),
"The total number of graph vertices is not correct" );
CV_TS_SEQ_CHECK_CONDITION( graph->edges->total >= graph->edges->active_count &&
(graph->edges->total == 0 || graph->edges->total >= prev_edge_total),
"The total number of graph vertices is not correct" );
// CvGraph and simple graph do not neccessary have the same "total" (active & free) number,
// so pass "graph->total" (or "graph->edges->total") to skip that check
test_seq_block_consistence( struct_idx, (CvSeq*)graph, graph->total );
test_seq_block_consistence( struct_idx, (CvSeq*)graph->edges, graph->edges->total );
update_progressbar();
}
return 0;
}
void Core_GraphTest::run( int )
{
try
{
RNG& rng = ts->get_rng();
int i, k;
double t;
clear();
test_progress = -1;
simple_struct.resize(struct_count, 0);
cxcore_struct.resize(struct_count, 0);
for( gen = 0; gen < generations; gen++ )
{
struct_idx = iter = -1;
t = cvtest::randReal(rng)*(max_log_storage_block_size - min_log_storage_block_size) + min_log_storage_block_size;
int block_size = cvRound( exp(t * CV_LOG2) );
block_size = MAX(block_size, (int)(sizeof(CvGraph) + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
storage = cvCreateMemStorage(block_size);
for( i = 0; i < struct_count; i++ )
{
int pure_elem_size[2], elem_size[2];
int is_oriented = (gen + i) % 2;
for( k = 0; k < 2; k++ )
{
t = cvtest::randReal(rng)*(max_log_elem_size - min_log_elem_size) + min_log_elem_size;
int pe = cvRound( exp(t * CV_LOG2) ) - 1; // pure_elem_size==0 does also make sense
int delta = k == 0 ? sizeof(CvGraphVtx) : sizeof(CvGraphEdge);
int e = pe + delta;
e = (e + sizeof(size_t) - 1) & ~(sizeof(size_t)-1);
e = MIN( e, (int)(storage->block_size - sizeof(CvMemBlock) -
sizeof(CvSeqBlock) - sizeof(void*)) );
pe = MIN(pe, e - delta);
pure_elem_size[k] = pe;
elem_size[k] = e;
}
cvTsReleaseSimpleGraph( (CvTsSimpleGraph**)&simple_struct[i] );
simple_struct[i] = cvTsCreateSimpleGraph( max_struct_size/4, pure_elem_size[0],
pure_elem_size[1], is_oriented );
cxcore_struct[i] = cvCreateGraph( is_oriented ? CV_ORIENTED_GRAPH : CV_GRAPH,
sizeof(CvGraph), elem_size[0], elem_size[1],
storage );
}
if( test_graph_ops( iterations*10 ) < 0 )
return;
storage.release();
}
}
catch(int)
{
}
}
//////////// graph scan test //////////////
class Core_GraphScanTest : public Core_DynStructBaseTest
{
public:
Core_GraphScanTest();
void run( int );
protected:
//int test_seq_block_consistence( int struct_idx );
int create_random_graph( int );
};
Core_GraphScanTest::Core_GraphScanTest()
{
iterations = 100;
struct_count = 1;
}
int Core_GraphScanTest::create_random_graph( int _struct_idx )
{
RNG& rng = ts->get_rng();
int is_oriented = cvtest::randInt(rng) % 2;
int i, vtx_count = cvtest::randInt(rng) % max_struct_size;
int edge_count = cvtest::randInt(rng) % MAX(vtx_count*20, 1);
CvGraph* graph;
struct_idx = _struct_idx;
cxcore_struct[_struct_idx] = graph =
cvCreateGraph(is_oriented ? CV_ORIENTED_GRAPH : CV_GRAPH,
sizeof(CvGraph), sizeof(CvGraphVtx),
sizeof(CvGraphEdge), storage );
for( i = 0; i < vtx_count; i++ )
cvGraphAddVtx( graph );
assert( graph->active_count == vtx_count );
for( i = 0; i < edge_count; i++ )
{
int j = cvtest::randInt(rng) % vtx_count;
int k = cvtest::randInt(rng) % vtx_count;
if( j != k )
cvGraphAddEdge( graph, j, k );
}
assert( graph->active_count == vtx_count && graph->edges->active_count <= edge_count );
return 0;
}
void Core_GraphScanTest::run( int )
{
CvGraphScanner* scanner = 0;
try
{
RNG& rng = ts->get_rng();
vector<uchar> vtx_mask, edge_mask;
double t;
int i;
clear();
test_progress = -1;
cxcore_struct.resize(struct_count, 0);
for( gen = 0; gen < generations; gen++ )
{
struct_idx = iter = -1;
t = cvtest::randReal(rng)*(max_log_storage_block_size - min_log_storage_block_size) + min_log_storage_block_size;
int storage_blocksize = cvRound( exp(t * CV_LOG2) );
storage_blocksize = MAX(storage_blocksize, (int)(sizeof(CvGraph) + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
storage_blocksize = MAX(storage_blocksize, (int)(sizeof(CvGraphEdge) + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
storage_blocksize = MAX(storage_blocksize, (int)(sizeof(CvGraphVtx) + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
storage = cvCreateMemStorage(storage_blocksize);
if( gen == 0 )
{
// special regression test for one sample graph.
// !!! ATTENTION !!! The test relies on the particular order of the inserted edges
// (LIFO: the edge inserted last goes first in the list of incident edges).
// if it is changed, the test will have to be modified.
int vtx_count = -1, edge_count = 0, edges[][3] =
{
{0,4,'f'}, {0,1,'t'}, {1,4,'t'}, {1,2,'t'}, {2,3,'t'}, {4,3,'c'}, {3,1,'b'},
{5,7,'t'}, {7,5,'b'}, {5,6,'t'}, {6,0,'c'}, {7,6,'c'}, {6,4,'c'}, {-1,-1,0}
};
CvGraph* graph = cvCreateGraph( CV_ORIENTED_GRAPH, sizeof(CvGraph),
sizeof(CvGraphVtx), sizeof(CvGraphEdge), storage );
for( i = 0; edges[i][0] >= 0; i++ )
{
vtx_count = MAX( vtx_count, edges[i][0] );
vtx_count = MAX( vtx_count, edges[i][1] );
}
vtx_count++;
for( i = 0; i < vtx_count; i++ )
cvGraphAddVtx( graph );
for( i = 0; edges[i][0] >= 0; i++ )
{
CvGraphEdge* edge;
cvGraphAddEdge( graph, edges[i][0], edges[i][1], 0, &edge );
edge->weight = (float)edges[i][2];
}
edge_count = i;
scanner = cvCreateGraphScanner( graph, 0, CV_GRAPH_ALL_ITEMS );
for(;;)
{
int code, a = -1, b = -1;
const char* event = "";
code = cvNextGraphItem( scanner );
switch( code )
{
case CV_GRAPH_VERTEX:
event = "Vertex";
vtx_count--;
a = cvGraphVtxIdx( graph, scanner->vtx );
break;
case CV_GRAPH_TREE_EDGE:
event = "Tree Edge";
edge_count--;
CV_TS_SEQ_CHECK_CONDITION( scanner->edge->weight == (float)'t',
"Invalid edge type" );
a = cvGraphVtxIdx( graph, scanner->vtx );
b = cvGraphVtxIdx( graph, scanner->dst );
break;
case CV_GRAPH_BACK_EDGE:
event = "Back Edge";
edge_count--;
CV_TS_SEQ_CHECK_CONDITION( scanner->edge->weight == (float)'b',
"Invalid edge type" );
a = cvGraphVtxIdx( graph, scanner->vtx );
b = cvGraphVtxIdx( graph, scanner->dst );
break;
case CV_GRAPH_CROSS_EDGE:
event = "Cross Edge";
edge_count--;
CV_TS_SEQ_CHECK_CONDITION( scanner->edge->weight == (float)'c',
"Invalid edge type" );
a = cvGraphVtxIdx( graph, scanner->vtx );
b = cvGraphVtxIdx( graph, scanner->dst );
break;
case CV_GRAPH_FORWARD_EDGE:
event = "Forward Edge";
edge_count--;
CV_TS_SEQ_CHECK_CONDITION( scanner->edge->weight == (float)'f',
"Invalid edge type" );
a = cvGraphVtxIdx( graph, scanner->vtx );
b = cvGraphVtxIdx( graph, scanner->dst );
break;
case CV_GRAPH_BACKTRACKING:
event = "Backtracking";
a = cvGraphVtxIdx( graph, scanner->vtx );
break;
case CV_GRAPH_NEW_TREE:
event = "New search tree";
break;
case CV_GRAPH_OVER:
event = "End of procedure";
break;
default:
CV_TS_SEQ_CHECK_CONDITION( 0, "Invalid code appeared during graph scan" );
}
ts->printf( cvtest::TS::LOG, "%s", event );
if( a >= 0 )
{
if( b >= 0 )
ts->printf( cvtest::TS::LOG, ": (%d,%d)", a, b );
else
ts->printf( cvtest::TS::LOG, ": %d", a );
}
ts->printf( cvtest::TS::LOG, "\n" );
if( code < 0 )
break;
}
CV_TS_SEQ_CHECK_CONDITION( vtx_count == 0 && edge_count == 0,
"Not every vertex/edge has been visited" );
update_progressbar();
}
// for a random graph the test just checks that every graph vertex and
// every edge is vitisted during the scan
for( iter = 0; iter < iterations; iter++ )
{
create_random_graph(0);
CvGraph* graph = (CvGraph*)cxcore_struct[0];
// iterate twice to check that scanner doesn't damage the graph
for( i = 0; i < 2; i++ )
{
CvGraphVtx* start_vtx = cvtest::randInt(rng) % 2 || graph->active_count == 0 ? 0 :
cvGetGraphVtx( graph, cvtest::randInt(rng) % graph->active_count );
scanner = cvCreateGraphScanner( graph, start_vtx, CV_GRAPH_ALL_ITEMS );
vtx_mask.resize(0);
vtx_mask.resize(graph->active_count, 0);
edge_mask.resize(0);
edge_mask.resize(graph->edges->active_count, 0);
for(;;)
{
int code = cvNextGraphItem( scanner );
if( code == CV_GRAPH_OVER )
break;
else if( code & CV_GRAPH_ANY_EDGE )
{
int edge_idx = scanner->edge->flags & CV_SET_ELEM_IDX_MASK;
CV_TS_SEQ_CHECK_CONDITION( edge_idx < graph->edges->active_count &&
edge_mask[edge_idx] == 0,
"The edge is not found or visited for the second time" );
edge_mask[edge_idx] = 1;
}
else if( code & CV_GRAPH_VERTEX )
{
int vtx_idx = scanner->vtx->flags & CV_SET_ELEM_IDX_MASK;
CV_TS_SEQ_CHECK_CONDITION( vtx_idx < graph->active_count &&
vtx_mask[vtx_idx] == 0,
"The vtx is not found or visited for the second time" );
vtx_mask[vtx_idx] = 1;
}
}
cvReleaseGraphScanner( &scanner );
CV_TS_SEQ_CHECK_CONDITION( cvtest::norm(Mat(vtx_mask),CV_L1) == graph->active_count &&
cvtest::norm(Mat(edge_mask),CV_L1) == graph->edges->active_count,
"Some vertices or edges have not been visited" );
update_progressbar();
}
cvClearMemStorage( storage );
}
storage.release();
}
}
catch(int)
{
}
cvReleaseGraphScanner( &scanner );
}
TEST(Core_DS_Seq, basic_operations) { Core_SeqBaseTest test; test.safe_run(); }
TEST(Core_DS_Seq, sort_invert) { Core_SeqSortInvTest test; test.safe_run(); }
TEST(Core_DS_Set, basic_operations) { Core_SetTest test; test.safe_run(); }
TEST(Core_DS_Graph, basic_operations) { Core_GraphTest test; test.safe_run(); }
TEST(Core_DS_Graph, scan) { Core_GraphScanTest test; test.safe_run(); }